General Instructions: -

- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.
- 2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
- 3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer 'X"be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- 6. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
- 11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong totaling of marks awarded on a reply.
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying.
 - Wrong transfer of marks from the answer book to online award list.

- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- 12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
- 13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- 15. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- 16. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

Marking scheme – 2020

CHEMISTRY (043) / CLASS XII

56/5/1

Q.No	Expected Answer / Value Points	Marks
	SECTION A	
1	By gaining one electron they acquire noble gas configuration/ smallest size and high effective	1
	nuclear charge in their respective period.	
2	Extremely small size/ absence of d orbital/highest electronegativity / low bond dissociation	1
	enthalpy of F-F bond.	
3	HI>HBr>HCI>HF	1
4	Low bond dissociation enthalpy and high hydration enthalpy.	1
5	X >X' /X is bigger in size and X' is smaller.	1
6	Mercury cell	1
7	5 F	1
8	k/2.303	1
9	Saccharine/Sucralose / alitame (any other except Aspartame)	1
10	Bakelite	1
11	(c)	1
12	(b)	1
13	(c)	1
14	(a)	1
15	One mark may be awarded to any option	1
16	(D)	1
17	(D)	1
18	(A)	1

19	(C)	1
20	(D)	1
	SECTION B	
21	• For a solution of volatile liquids, the partial vapour pressure of each component of the solution is directly proportional to its mole fraction present in solution.	1
	 If we compare the equations for Raoult's law and Henry's law, it can be seen that the partial pressure of the volatile component or gas is directly proportional to its mole fraction in solution. 	1
22	(i) NaCN acts as a leaching agent / it forms complex with gold/ $[Ag(CN)_2]^T$ $4Au + 8CN^T + 2H_2O + O_2 \longrightarrow 4 [Au(CN_2)]^T + 4OH^T (Balancing may be ignored)$	1
	(II) CO acts as a reducing agent	1
22	 It is leached out using acid or bacteria Electrolytic refining 	1 1
23	 The accumulation of molecular species at the surface rather than in the bulk of a solid or liquid. Example: adsorption of gases on surface of active charcoal (or any other suitable example) Adsorption of reactants occurs on surface of catalyst and reaction takes place. 	1+½ ½
	OR	
23	A state of continuous zig-zag motion of particles.	1
	• Unbalanced bombardment of the particles by the molecules of the dispersion medium.	1/2
	• The Brownian movement has a stirring effect which does not permit the particles to settle.	1∕₂
24	(a) Hexacyanidoferrate(III) / Hexacyanoferrate(III) d ² sp ³	1/2 1/2
	(b) Ligand which can ligate through two different atoms is called ambidentate ligand whereas di- or polydentate ligand uses its two or more donor atoms to bind a single metal ion. / a chelating ligand forms a more stable complex as compared to an ambidentate ligand. / chelating ligand forms a cyclic complex while ambidentate ligand forms a non-cyclic complex	1
25	 Antiseptic is applied on living tissue, to kill or stop growth of microbes while disinfectant is applied on inanimate/ non -living objects 	1
	• 0.2 per cent solution of phenol is an antiseptic while its one percent solution is disinfectant.	1
26.	(i)HOCH ₂ CH ₂ OH and $-$ / ethylene glycol and phthalic acid / Ethane-1,2-diol and Benzene-1,	1
	2 -dicarboxylic acid	1
27		
(i)		1
(ii)	F F F F F F F F F F F F F F F F F F F	1

	SECTION C				
28	$\Delta T_{\rm f} = i K_{\rm f} m$	1/2			
	$0.068 = 1 \times 1.86 \times 0.01$				
	i = 3.65 or 3.656				
	$\alpha = 1 - 1/n - 1$	<i>1</i> / ₂			
	$\alpha = 0.883 \text{ or } 0.885$				
	88.3% or 88.5% (or by any other correct method)	1			
29	m=ZIt	1/2			
	2 = 63.5 x 2 x t/2x96500				
	t = 3039.4 s				
	$m_1/m_2 = eq wt_1/eq wt_2$				
	$2 / m_2 = 63.5/2 / 65/2$				
	$m_2 = 2.05 \text{ g}$ (or by any other correct method) (deduct ½ mark for incorrect or no unit)				
30	(i) Amylose is water soluble component of starch while amylopectin is insoluble in water	1			
	(ii) Globular proteins are spherical in shape while fibrous are linear	1			
	(iii) Nucleoside consists of a sugar and a base				
	(III) Nucleoside consists of a sugar and a base	1			
	When nucleoside is linked to phosphate group, it forms a nucleotide				
	(or any other suitable difference in each case)				
31	A: $(CH_3)_2 C=CH_2$ B: $(CH_3)_2 CBrCH_3$ C: $(CH_3)_3 C - C(CH_3)_3$	½ X6			
	D: $(CH_3)_2 CHCH_2MgBr$ E: $(CH_3)_2 CHCH_3$ F: $(CH_3)_2 CHCH_2OC_2H_5$	=3			
32	(i) $CH_3 CH_2 CH_2 OH$				
	(ii) $(CH_3)_2C=CH_2$				
	(iii)				
	OR				
32	OH $\left[\bar{O} Na^{\dagger}\right]$ $\overline{O} Na^{\dagger}$ OH				
	CHCl CHCl CHO				
	$\left[\begin{array}{c} \begin{array}{c} \\ \end{array}\right] \xrightarrow{\text{CHCl}_3 + \text{ aq NaOH}} \left[\begin{array}{c} \\ \end{array}\right] \xrightarrow{\text{NaOH}} \left[\begin{array}{c} \\ \end{array}\right] \xrightarrow{\text{H}} \left[\begin{array}{c} \\ \end{array}\right] \xrightarrow{\text{H}} \left[\begin{array}{c} \\ \end{array}\right]$				
	(Intermediate compound in above equation may be ignored)				
	1. CH₂MgBr	1			
	(ii)HCHO $\xrightarrow{2. H_2O}$ CH ₃ CH ₂ OH				
		1			
	$(\Pi) C_6 \Pi_5 O \Pi + C \Pi_3 C O C \Pi_3$ (or by any other correct method)				
33	(i) Aniline forms salt with AlCl ₃ , the Lewis acid.	1			
	(ii) Aryl balides do not undergo nucleophilic substitution with the anion formed by				
	phthalimide				
	(iii) Due to +I effect of alkyl group electron density on N atom increases.				
34	Lyophobic sol Lyophilic sol				
	Interaction between dispersed phase Interaction between dispersed phase and				
	and dispersion medium are weak dispersion medium are strong				
	irreversible				
	Can be easily coagulated Can't be easily coagulated				
	(or any other suitable difference)				

34(i)Lyophilic colloids have a unique property of protecting lyophobic colloids./ Lyophilic colloids form a layer around the lyophobic colloids to protect them from the electrolyte or coagulation.1(ii)Potential difference between the fixed layer and the diffused layer of opposite charges of a colloid. (iii)1(iii)Substances used for stabilisation of an emulsion.135a)i) Variable or multiple oxidation states / ability to form complexes / they provide large surface area for adsorption. ii) Similar size/similar properties iii) No unpaired electron/weak interatomic metallic bonding / completely or fully filled d orbitals1b)i) 2Na2CrQ4 + 2 H ⁺ \rightarrow Na2Cr2Q7 + 2 Na ⁺ + H2Q (Balancing may be ignored in both above reactions) OR135a)i) Ti ³⁺ has an unpaired electron while there are no unpaired electrons in Sc ³⁺ . ii) Stable t ₂ g ³ of Cr ³⁺ ion1
31 (i) Exprime transfer around the lyophobic colloids to protect them from the electrolyte or coagulation. 1 (ii) Potential difference between the fixed layer and the diffused layer of opposite charges of a colloid. 1 (iii) Substances used for stabilisation of an emulsion. 1 35 a) i) Variable or multiple oxidation states / ability to form complexes / they provide large surface area for adsorption. 1 ii) Similar size/similar properties 1 iii) No unpaired electron/weak interatomic metallic bonding / completely or fully filled d orbitals 1 b) i) 2Nno ₂ + 2 H ⁺ → Na ₂ Cr ₂ O ₇ + 2 Na ⁺ + H ₂ O 1 ii) 2MnO ₂ + 4KOH + O ₂ → 2K ₂ MnO ₄ + 2H ₂ O 1 galancing may be ignored in both above reactions) OR 1 35 a) i) Tail as an unpaired electron while there are no unpaired electrons in Sc ³⁺ . 1 35 ii) Stable t ₂ g ³ of Cr ³⁺ ion 1 1
coagulation.1(ii)Potential difference between the fixed layer and the diffused layer of opposite charges of a colloid.1(iii)Substances used for stabilisation of an emulsion.135a)i) Variable or multiple oxidation states / ability to form complexes / they provide large surface area for adsorption. ii) Similar size/similar properties1iii) No unpaired electron/weak interatomic metallic bonding / completely or fully filled d orbitals1b)i) 2Na ₂ CrO ₄ + 2 H ⁺ \rightarrow Na ₂ Cr ₂ O ₇ + 2 Na ⁺ + H ₂ O ii) 2MnO ₂ + 4KOH + O ₂ \rightarrow 2K ₂ MnO ₄ + 2H ₂ O (Balancing may be ignored in both above reactions)0R35a)i) Ti ³⁺ has an unpaired electron while there are no unpaired electrons in Sc ³⁺ . ii) Stable t ₂ g ³ of Cr ³⁺ ion1
(ii)Potential difference between the fixed layer and the diffused layer of opposite charges of a colloid.1(iii)Substances used for stabilisation of an emulsion.135a)i) Variable or multiple oxidation states / ability to form complexes / they provide large surface area for adsorption. ii) Similar size/similar properties110Similar size/similar properties111iii) No unpaired electron/weak interatomic metallic bonding / completely or fully filled d orbitals111ii) 2Na2crO4 + 2 H ⁺ \rightarrow Na2Cr2O7 + 2 Na ⁺ + H2O (Balancing may be ignored in both above reactions)10R0R135i) Ti ³⁺ has an unpaired electron while there are no unpaired electrons in Sc ³⁺ .135ii) Stable t ₂ g ³ of Cr ³⁺ ion1
colloid.1(iii)Substances used for stabilisation of an emulsion.135a)i) Variable or multiple oxidation states / ability to form complexes / they provide large surface area for adsorption. ii) Similar size/similar properties iii)No unpaired electron/weak interatomic metallic bonding / completely or fully filled d orbitals1b)i) 2Na2CrO4 + 2 H ⁺ \rightarrow Na2Cr2O7 + 2 Na ⁺ + H2O ii) 2MnO2 + 4KOH + O2 \rightarrow 2K2MnO4 + 2H2O (Balancing may be ignored in both above reactions) OR135a)i) Ti ³⁺ has an unpaired electron while there are no unpaired electrons in Sc ³⁺ . ii) Stable t2g ³ of Cr ³⁺ ion1
Substances used for stabilisation of all endusion.Substances used for stabilisation of all endusion.SECTION D35a) i) Variable or multiple oxidation states / ability to form complexes / they provide large surface area for adsorption. ii) Similar size/similar properties1iii) Similar size/similar properties iii)No unpaired electron/weak interatomic metallic bonding / completely or fully filled d orbitals1b) i) $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$ ii) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ (Balancing may be ignored in both above reactions) OR135a) i) Ti ³⁺ has an unpaired electron while there are no unpaired electrons in Sc ³⁺ .135ii) Stable t_2g^3 of Cr^{3+} ion1
SECTION D35a) i) Variable or multiple oxidation states / ability to form complexes / they provide large surface area for adsorption. ii) Similar size/similar properties iii)No unpaired electron/weak interatomic metallic bonding / completely or fully filled d orbitals1b) i) 2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O ii) 2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O (Balancing may be ignored in both above reactions) OR135a) i) Ti ³⁺ has an unpaired electron while there are no unpaired electrons in Sc ³⁺ .135ii) Stable t ₂ g ³ of Cr ³⁺ ion1
 a) i) Variable or multiple oxidation states / ability to form complexes / they provide large surface area for adsorption. ii) Similar size/similar properties iii) No unpaired electron/weak interatomic metallic bonding / completely or fully filled d orbitals b) i) 2Na₂CrO₄ + 2 H⁺ → Na₂Cr₂O₇ + 2 Na⁺ + H₂O ii) 2MnO₂ + 4KOH + O₂ → 2K₂MnO₄ + 2H₂O (Balancing may be ignored in both above reactions) OR a) i) Ti³⁺ has an unpaired electron while there are no unpaired electrons in Sc³⁺. ii) Stable t₂g³ of Cr³⁺ ion
surface area for adsorption. ii) Similar size/similar properties iii) No unpaired electron/weak interatomic metallic bonding / completely or fully filled d orbitals b) i) $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$ ii) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ (Balancing may be ignored in both above reactions) OR a) i) Ti ³⁺ has an unpaired electron while there are no unpaired electrons in Sc ³⁺ . ii) Stable t ₂ g ³ of Cr ³⁺ ion
ii) Similar size/similar properties1iii) No unpaired electron/weak interatomic metallic bonding / completely or fully filled d1orbitals1b) i) $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$ 1ii) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ 1 (Balancing may be ignored in both above reactions)OR 35i) Ti ³⁺ has an unpaired electron while there are no unpaired electrons in Sc ³⁺ .135ii) Stable t_2g^3 of Cr^{3+} ion1
$\begin{array}{c c c c c c } \hline & & & & & & & & & & & & & & & & & & $
b) i) $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$ ii) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ (Balancing may be ignored in both above reactions) OR a) i) Ti ³⁺ has an unpaired electron while there are no unpaired electrons in Sc ³⁺ . ii) Stable t ₂ g ³ of Cr ³⁺ ion 1
ii) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ (Balancing may be ignored in both above reactions) OR a) i) Ti ³⁺ has an unpaired electron while there are no unpaired electrons in Sc ³⁺ . 1 ii) Stable t ₂ g ³ of Cr ³⁺ ion 1
(Balancing may be ignored in both above reactions) OR a) i) Ti ³⁺ has an unpaired electron while there are no unpaired electrons in Sc ³⁺ . ii) Stable t_2g^3 of Cr ³⁺ ion 1
ORa) i) Ti ³⁺ has an unpaired electron while there are no unpaired electrons in Sc^{3+} .135ii) Stable t_2g^3 of Cr^{3+} ion1
a) i) Ti ³⁺ has an unpaired electron while there are no unpaired electrons in Sc^{3+} . ii) Stable t_2g^3 of Cr^{3+} ion
35 ii) Stable t_2g^3 of Cr^{3+} ion
1
h) 1 Both show variable ovidation states
2. Both show f-f transitions
3. Electrons of f-orbital in both show poor shielding effect
4. both have common +3 oxidation state
5. both show contraction in atomic radii. (any two suitable differences)
c) $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$
36 a) (i) 3-hydroxy-3-phenylpropanal /
1
/ C ₆ H₅CH(OH)CH₂CHO
(ii) Phenyl hydrazone of benzaldehyde / 1
$C_6H_5CH=N-NHC_6H_5$
(iii)Sodium benzoate and benzul alcohol /
and
b) (i) On heating with NaOH and I_2 : CH ₃ CH=CHCOCH ₃ will form yellow ppt of CHI ₃ while 1
other compound doesn't .
(ii) On adding NaHCO ₃ . Benzoic acid produces brisk effervescence while other
compound doesn t.
36 a) (i) CH ₂ CH ₂ CH ₂ 1
(ii) C ₆ H ₆
(iii) CH ₂ =CH-CH ₂ CHO
b) $C_6H_5COCH_3 < CH_3COCH_3 < CH_3CHO < HCHO$ 1

	c) $H_3 - CH = NNH - NO_2$ NO ₂ NO ₂	1
37	a) $k = (2.303 / t) \log ([A]_o / [A]_t)$	1/2
	$k = (2.303 / 40) \log (100 / 75)$ = 0.007 min ⁻¹ or 0.0071 min ⁻¹ or 0.0072 min ⁻¹	1
	$t = (2.303 / k) \log ([A]_o / [A]_t)$ t = (2.303 / 0.0071) log (100/20)	1/2
	t =230 min or 226.7min or 223.7 min. (deduct ½ mark if incorrect or no unit)	1
	b) Sum of powers of the concentration of the reactants in the rate law expression.	1
	When one of the reactant is present in large excess.	1
	OR	
37	a) $k = 0.693/t_{1/2}$ $k_1 = 0.693/t_{1/2} = 0.693/30$ $k_2 = 0.693/t_{1/2} = 0.693/10$ $\log k_2/k_1 = E_a/2.303 R (1/T_1 - 1/T_2)$	1
	$\log 3 = E_a / 2.303 \times 8.314 (1/300 - 1/320)$	1
	 E_a = 2.303 X 8.314 x 0.4771 x (300 x 320/20) = 43848.5 J/mol OR 43855 J/mol or 43.8 kJ/mol b) Proper orientation Energy of the colliding particles should be more than threshold energy c) For a complex reaction, order of reaction is applicable while molecularity has no meaning. 	½ 1 ½ ½ 1

Marking scheme – 2020

CHEMISTRY (043)/ CLASS XII

56/5/2

Q.No	Expected Answer / Value Points	Marks
	SECTION A	
1	By gaining one electron they acquire noble gas configuration	1
2	Extremely small size/ absence of d orbital/highest electronegativity	1
3	HI>HBr>HCI>HF	1
4	Low bond dissociation enthalpy and high hydration enthalpy	1
5	X >X'	1
6	Benzylchloride / C ₆ H ₅ CH ₂ Cl	1
7	N,N-dimethylaniline OR N,N-dimethylbenzenamine	1
8	Glycosidic linkage	1
9	Aspartame	1
10	Teflon/PTFE	1
11	(c)	1
12	(c)	1
13	(d)	1
14	(c)	1
15	(d)	1
16	(A)	1
17	(D)	1
18	(C)	1
19	(D)	1
20	(A)	1
	SECTION B	
21	i) NaCN acts as a leaching agent / it forms complex with gold/ [Ag(CN) ₂] ⁻	1
	$4Au + 8CN + 2H_2O + O_2 \longrightarrow 4 [Au(CN_2)] + 4OH - (Balancing may be ignored)$	1
	ii) CO acts as a reducing agent	
	OR	
21	 It is leached out using acid or bacteria 	1
	Electrolytic refining	1
22	• For a solution of volatile liquids, the partial vapour pressure of each component of the	1
	solution is directly proportional to its mole fraction present in solution.	
	If we compare the equations for Raoult's law and Henry's law, it can be seen that the	1
	partial pressure of the volatile component or gas is directly proportional to its mole	
	fraction in solution.	
23	(i)	
	\mathbf{I} \mathbf{I} \mathbf{I}	1
	S S	
	OH US	
	(ii)	
	F	
	F	
	Br	1
	\vec{F}	
	V	

24	• The accumulation of molecular species at the surface rather than in the bulk of a solid or				
	liquid e.g. adsorption of gases on surface of active charcoal (or any other suitable example)				
	Adsorption of reactants occurs on surface of catalyst and reaction takes place.				
24	OR A state of continuous ris ray motion of norticles				
24	 A state of continuous zig-zag motion of particles. Unbalanced hembardment of the particles by the molecules of the dispersion medium. 				
	Onbalanced bombardment of the particles by the molecules of the dispersion medium. The Brownian movement has a stirring effect which does not normit the particles to settle				
	The brownian movement has a stirring creet which does not permit the particles to settle.	/2			
25	(i) Formaldehyde and phenol / HCHO and C_6H_5OH	1			
	(ii) Adipic acid and hexamethylenediamine / HOOC (CH_2) ₄ COOH and H_2N (CH_2) ₆ NH_2	1			
26	2 months to be since for attenuation the supervise	2			
20	Antiseptic is applied on living tissue, to kill or ston growth of microbes while disinfectant is	2 1			
21	applied on inanimate/ non -living objects	1			
	• 0.2 per cent solution of phenol is an antiseptic while its one percent solution is disinfectant.	1			
	SECTION C				
28	A: $(CH_3)_2 C=CH_2$ B: $(CH_3)_2 CBrCH_3$ C: $(CH_3)_3 C-C(CH_3)_3$	½ X6			
20	D: $(CH_3)_2 CHCH_2 WigBr E: (CH_3)_2 CHCH_3 F: (CH_3)_2 CHCH_2 OL_2 H_5$	1/			
29	$\Delta I_{f} = IK_{f}III$ 0.068 - i x 1.86 x 0.01	1/2			
	i = 3.65 or 3.656	1/2			
	$AlCl_3 \rightarrow Al^{3+} + 3 Cl^{-}$				
	1 0 0				
	$1-\alpha$ α 3α				
	$\alpha = i - 1/n - 1$				
	$\alpha = .883 \text{ or } 0.885$				
20	88.3% or 88.5% (or any other suitable/ correct method)				
50	a) Polysacchanges contain a large number of monosacchange units joined together by glycosidic linkages / carbobydrates which give a large number of monosaccharides on	/2			
	hydrolysis.				
	Example: Starch / Cellulose / Glycogen	1/2			
	b) Loss of biological activity of native form of protein when subjected to a change in	1/2			
	temperature or pH./During denaturation 2° and 3° structures are destroyed.	1/2			
	Example: Coagulation of egg white / Curdling of milk				
	c) When the polypeptide chains run parallel and are held together by hydrogen and disulphide bonds, then fibre like structure is formed	1/2 1/			
	Example: Keratin / Myosin	/2			
31	m=Zlt	1/2			
	2 = 63.5 x 2 x t/2x96500	1/2			
	t = 3039.4 s	1/2			
	$m_1/m_2 = eq wt_1/eq wt_2$	1/2			
	$2/m_2 = 63.5/2/65/2$ (or by any other correct method)	1/2 1/2			
	$m_2 = 2.05 \text{ g}$ (of by any other correct method)	/2			
32					
	Lyophobic sol Lyophilic sol				
	Interaction between dispersed phase Interaction between dispersed phase and	1			
	and dispersion medium are weak dispersion medium are strong				
	Unstable stable	1			
	Irreversible reversible	1			
	Can easily be coagulated Can't easily be coagulated				
	(any three from above differences) (or any other suitable difference)				

32 i) Lupphilic colloids have a unique property of protecting lyophobic colloids / Lyophilic colloids form a layer around the lyophobic colloids to protect the lyophobic colloids from the electrolyte in order to prevent coagulation. ii) Potential difference between the fixed layer and the diffused layer of opposite charges of a colloid. iii) Substances used for stabilisation of an emulsion. 33 i) CH ₂ CH ₂ CH ₂ OH 1 ii) (CH ₁ , L ₂ C=CH ₂) 1 $\qquad \qquad $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32	i) Lyophilic colloids have a unique property of protecting lyophobic colloids./ Lyophilic colloids	1		
ii)Potential difference between the fixed layer and the diffused layer of opposite charges of a colloid.1iii)Substances used for stabilisation of an emulsion.133i)CH ₂ CH ₂ CH ₂ OH (i)1iii)(CH ₂) ₂ C=CH ₂ 1iii) $(C+_{1})_{2}C=CH_{2}$ 1iii) $(C+_{1})_{2}C=CH_{2}$ 1iii) $(C+_{1})_{2}C=CH_{2}$ 1iii) $(C+_{1})_{2}C=CH_{2}$ 1iii) $(C+_{1})_{2}C=CH_{2}$ 1(ii) $C+_{1}C=CH_{2}H$ $(C+_{1}C+_{1})_{2}C=CH_{2}C+_{1}C+$		form a layer around the lyophobic colloids to protect the lyophobic colloid from the electrolyte in order to prevent coagulation.			
iii)Substances used for stabilisation of an emulsion.133i)CH, CH, CH, CH, QH1ii)(CH_1), C=CH_21iii) $(C+_1), C=CH_2$ 1iii) $(C+_1), C=CH_2$ 133 (OR) (OR) 1 (OR) (OR) 133 (OR) (OR) 1 (I) (OR) (OR) 1 (I) (OR) (OR) 1 (I) (OR) (OR) 1 (I) (I) (OR) 1 (I) <		ii) Potential difference between the fixed layer and the diffused layer of opposite charges of a colloid	1		
33i)CH ₁ CH ₂ CH ₂ OH1ii)(CH ₁), C=CH ₂ 1iii) \swarrow -CH ₂ I + \checkmark -OH133 $(\bigcap$ -CH ₂ I + \checkmark -OH134 $(\bigcap$ -CH ₂ I + \checkmark -OH1(ii)CH ₃ OH+CH ₂ CHO $(Intermediate compound in above equation may be ignored)(iii)CH3OH+CH2COOH(Intermediate compound in above equation may be ignored)34i)Aniline is a Lewis base and anhydrous AlCL; the catalyst is a Lewis acid which form a sait34i)Aniline is a Lewis base and anhydrous AlCL; the catalyst is a Lewis acid which form a sait35a)k = (2.303 / 1) log (A0/A)k = (2.303 / 1) log (A0/A)½k = (2.303 / 1) log (A0/A)t = (2.303 / 1) log$		iii) Substances used for stabilisation of an emulsion.	1		
ii) $(CH_3)_5C=CH_2$ 1iii) $\bigoplus GH_4 = (CH_4) + (CH_4)$	33	i) CH ₃ CH ₂ CH ₂ OH	1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ii) $(CH_3)_2C=CH_2$ iii)	1		
OROHOH33 $(i) \bigoplus_{(1)} \bigoplus_{$		\sim $CH_2I + \sim$ OH	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		OR			
33 (i) (i) $(i$		OH $\overline{O} Na^+$ $\overline{O} Na^+$ OH	-		
(i)LI (Intermediate compound in above equation may be ignored)(ii)1. CH ₃ MgBr 2. H ₂ OCH ₃ CH ₂ OH1(iii)CeH ₂ OH +CH ₃ COOH 3.11(iii)CeH ₂ OH +CH ₃ COOH 1.11(iii)CeH ₂ OH +CH ₃ COOH 1.11134i)Aniline is a Lewis base and anhydrous AlCl ₃ the catalyst is a Lewis acid which form a salt 1.1ii)Aryl halides do not undergo nucleophilic substitution with the anion formed by phthalimide.1iii)Due to +I effect of alkyl group electron density on N atom increases.135a)k = (2.303 / 10) log (h ₂ / A) k = (2.303 / 40) log (100 / 75) = 0.007 min ⁻¹ or 0.0071 min ⁻¹ or 0.0072 min ⁻¹ t = (2.303 / k) log (h ₂ / A) t = (2.303 / k) log (h ₂ / A) t = (2.303 / k) log (h ₂ / A) t = (2.303 / k) log (h ₂ / A) t = (2.303 / k) log (h ₂ / A) t = (2.303 / k) log (h ₂ / A) 	33	$(1) \xrightarrow{\text{CHCl}_3 + \text{ aq NaOH}} \xrightarrow{\text{CHCl}_2} \xrightarrow{\text{NaOH}} \xrightarrow{\text{CHO}} \xrightarrow{\text{H}^+} \xrightarrow{\text{CHO}} \xrightarrow{\text{CHO}} \xrightarrow{\text{CHO}} \xrightarrow{\text{H}^+} \xrightarrow{\text{CHO}} \xrightarrow{\text{CHO}}$	1		
(ii)HCHO1. (H_3MgBr) 2. H_2O CH_3CH_2OH1(iii) $C_6H_5OH + CH_3COOH$ i) Aniline is a Lewis base and anhydrous AlCl ₃ the catalyst is a Lewis acid which form a salt ii) Aryl halides do not undergo nucleophilic substitution with the anion formed by phthalimide.134i) Aniline is a Lewis base and anhydrous AlCl ₃ the catalyst is a Lewis acid which form a salt ii) Aryl halides do not undergo nucleophilic substitution with the anion formed by phthalimide.135a) k = (2.303 / t) log (A_0 / A_1) k = (2.303 / t) log (A_0 / A_1) k = (2.303 / 40) log (100 / 75) = 0.007 min ⁻¹ or 0.0071 min ⁻¹ or 0.0072 min ⁻¹ t = (2.303 / 0.0071) log (100/20) t = 230 min or 226.7min or 223.7 min. When one of the reactant is present in large excess. OR135a) K_4 = 0.693/ t_{3/2} = 0.693 / 30 = 0.0231 min ⁻¹ K_2 = 0.693 / t_{3/2} = 0.693 / 10 = 0.0693 min ⁻³ log K_2/K_1 = E_a / 2.303 R (l/ T_1 - 1/ T_2) E_a = 2.303 R log K_2/K_1 (T_1T_2/T_2-T_1) = 2.303 X 8.314 log(0.0693/0.0231) X (300X320/320-300) = 43848.5 J/mol OR 43855 J/mol OR 43.8 kJ/mol%36a) i) Variable or multiple oxidation states / ability to form complexes / they provide large surface area for adsorption. ii) Similar size/similar properties iii)No unpaired electron/wak metallic bonding/ completely or fully filled d orbitals ii) $2Na_0C_0 + 2 H^+ \rightarrow Na_2Cr_0 - 2 > 2K_3MnO_a + 2H_2O1$		(I) \checkmark (Intermediate compound in above equation may be ignored)			
(iii) $C_eH_3OH + CH_3COOH _H_\bullet C_eH_3OCOCH_3$ 134i) Aniline is a Lewis base and anhydrous AlCl3 the catalyst is a Lewis acid which form a salt1ii) Aryl halides do not undergo nucleophilic substitution with the anion formed by phthalimide.1iii) Due to +1 effect of alkyl group electron density on N atom increases.135a) k = (2.303 / t) log (A_0 / A_1) k = (2.303 / t) log (A_0 / A_1) k = (2.303 / t) log (A_0 / A_1) t = (2.303 R log K_2/K_1 (T_1 T_2 / T_2 / T_1) t = a 2.303 R log K_2/K_1 (T_1 T_1 / T_2) t = a 2.303 R log K_2/K_1 (T_1 T_1 / T_2 / T_1) t = a 2.303 R log K_2/K_1 (T_1 T_2 / T_2 / T_1) t = a 2.303 X 8.314 log (0.0693 / 0.0231) X (300X320/320-300) t = 43848.5 J/mol OR 43.885 J/mol OR 43.8 kJ/mol% Ho Proper orientation the regy of the colliding particles should be more than threshold energy t = c) For a complex reaction, order of reaction is applicable while molecularity has no meaning.136 <t< td=""><td></td><td>(ii)HCHO $\xrightarrow{1. CH_3MgBr}$ CH₃CH₂OH</td><td>1</td></t<>		(ii)HCHO $\xrightarrow{1. CH_3MgBr}$ CH ₃ CH ₂ OH	1		
(or any other suitable method)34i) Aniline is a Lewis base and anhydrous AlCl ₃ the catalyst is a Lewis acid which form a salt1ii) Aryl halides do not undergo nucleophilic substitution with the anion formed by phthalimide.1iii) Due to +I effect of alkyl group electron density on N atom increases.135a) k = (2.303 / 1) log (Λ_0 / Λ_0) k = (2.303 / 0) log (100 / 75) = 0.007 min ⁻¹ or 0.0072 min ⁻¹ t = (2.303 / 0.0071) log (100/20) t = 230 min or 226.7 min or 223.7 min.11t = (2.303 / 0.0071) log (100/20) t = 230 min or 226.7 min or 223.7 min.11t = (2.303 / 1/1/2) = 0.693 / 30 = 0.0231 min ⁻¹ k $\xi_2 = 0.693 / t_{1/2} = 0.693 / 10 = 0.0693 min-1log K2/K1 = Ea / 2.303 R (1/T1 - 1/T2)Ea = 2.303 R log K2/K1 (T1T2/T2-T1)= 2.303 X 8.314 log (0.0693/0.0231) X (300X320/320-300)= 43848.5 J/mol OR 43855 J/mol OR 43.8 k/J/mol%36a) i) Variable or multiple oxidation states / ability to form complexes / they provide largesurface area for adsorption.ii) Similar size/similar propertiesiii) No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals136a) i) Variable or multiple oxidation states / ability to form complexes / they provide largesurface area for adsorption.iii) Similar size/similar propertiesiiiiNo unpaired electron/weak metallic bonding/ completely or fully filled d orbitals136a) i) Variable or multiple oxidation states / ability to form complexes / they provide largesurface area for adsorption.iii) Similar size/similar propertiesiii) Noun2 + 4K0H + O2 + 2K2MNO4 + 2H2O1$		(iii) $C_6H_5OH + CH_3COOH$ H_{\bullet}^{+} $C_6H_5OCOCH_3$ 1			
34i) Aniline is a Lewis base and anhydrous AICl3 the catalyst is a Lewis acid which form a salt1ii) Aryl halides do not undergo nucleophilic substitution with the anion formed by phthalimide.1iii) Due to +I effect of alkyl group electron density on N atom increases.135a) k = (2.303 / t) log (A_0 / A_i) k = (2.303 / 40) log (100 / 75) = 0.007 min ⁻¹ or 0.0071 min ⁻¹ or 0.0072 min ⁻¹ t = (2.303 / 0.0071) log (100/20) t = 230 min or 226.7min or 223.7 min.11t = (2.303 / t) log (A_0 / A_i) t = (2.303 / t) log (100/20) t = 230 min or 226.7min or 223.7 min.1when one of the reactant is present in large excess.1080835a) K_1= 0.693 / t_{1/2}= 0.693 / 30 = 0.0231 min ⁻¹ K_2= 0.693 / t_{1/2}= 0.693 / 10 = 0.0693 min ⁻¹ k = 2.303 R log K_2/K_1 = E_a / 2.303 R (1/T_1 - 1/T_2) E_a = 2.303 R log K_2/K_1 (T_1^2/T_2-T_1) = 2.303 X 8.314 log(0.0693/0.0231) X (300X320/320-300) = 43848.5 J/mol OR 43855 J/mol OR 43.8 kJ/mol½36a) i) Variable or multiple oxidation states / ability to form complexes / they provide large surface area for adsorption. iii j) Similar size/similar properties iiii)No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals136a) i) Variable or multiple oxidation states / ability to form complexes / they provide large surface area for adsorption. iii j) Similar size/similar properties iiii)No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals136a) i) Variable or multiple oxidation states / ability to form complexes / they provide large surface area for adsorption. iii j) Similar size/similar properties iiii)No unpaired electron/		(or any other suitable method)			
111111phthalimide.11phthalimide.11111211135a)k = (2.303 / t) log (A_0 / A_)k = (2.303 / 40) log (100 / 75)= 0.007 min ⁻¹ or 0.0071 min ⁻¹ or 0.0072 min ⁻¹ t = (2.303 / k) log (A_0 / A_)t = (2.303 / k) log (A_0 / A_)t = (2.303 / k) log (100 / 20)t = (2.303 / k) log (A_0 / A_)t = (2.303 / k) log (A_0 / A_)t = (2.303 / k) log (100 / 20)t = (2.303 / k) log (20 / 21) r (17 / 2)t = (2.303 / k) log (20 / 21) r (17 / 2) r (1)t = (2.303 / k) log (20 / 21) r (17 / 2) r (1)t = (2.303 / k) log (20 / 21) r (17 / 2) r (1)t = (2.303 / k) log (20 / 21) r (17 / 2) r (1)t = (2.303 / k) log (20 / 21) r (17 / 2) r (1)t = (2.303 / k) log (20 / 21) r (17 / 2) r (1)t = (2.303 / k) log (20 / 21) r (17 / 2) r (1)t = (2.303 / k) log (20 / 21) r (10 / 21 / 2)t = (2.303 / k) log (20 / 21) r (17 / 2) r (10 / 21 / 2)t = (2.303 / k) log (20 / 21) r (17 / 2) r (12 / 21 / 2)<	34	i) Aniline is a Lewis base and anhydrous $AlCl_3$ the catalyst is a Lewis acid which form a salt	1		
iii)Due to +I effect of alkyl group electron density on N atom increases.135a)k = (2.303 / t) log (A_0 / A_i) k = (2.303 / 40) log (100 / 75) = 0.007 min ⁻¹ or 0.0071 min ⁻¹ or 0.0072 min ⁻¹ t = (2.303 / k) log (A_0 / A_i) t = (2.303 / 0.0071) log (100/20) t = 230 min or 226.7min or 223.7 min.1b)Sum of powers of the concentration of the reactants in the rate law expression. When one of the reactant is present in large excess.135a) $K_1 = 0.693/ t_{1/2} = 0.693 / 30 = 0.0231 min-1K_2 = 0.693 / t_{1/2} = 0.693 / 10 = 0.0693 min-1log K_2/K_1 = E_a / 2.303 R (1/ T_1 - 1/ T_2)E_a = 2.303 R log K_2/K_1 (T_1T_2/T_2-T_1)= 2.303 X 8.314 log (0.0693/0.0231) X (300X320/320-300)= 43848.5 J/mol OR 43855 J/mol OR 43.8 kJ/mol½36a)i) Variable or multiple oxidation states / ability to form complexes / they provide largesurface area for adsorption.ii) Similar size/similar propertiesiii)No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals136a)i) Variable or multiple oxidation states / ability to form complexes / they provide largesurface area for adsorption.ii) Similar size/similar propertiesiii)No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals136a)i) Variable or multiple oxidation states / ability to form complexes / they provide largesurface area for adsorption.ii) Similar size/similar propertiesiii) No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals137i)i)ii) 2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O1$		phthalimide.	T		
35 a) $k = (2.303 / 1) \log (A_0 / A_1)$ ½ k = (2.303 / 40) log (100 / 75) = 0.007 min ⁻¹ or 0.0071 min ⁻¹ or 0.0072 min ⁻¹ 1 t = (2.303 / k) log (A_0 / A_1) 1 1 t = (2.303 / 0.0071) log (100/20) t = (2.303 / 0.0071) log (100/20) ½ t = (2.303 / 0.0071) log (100/20) ½ 1 b) Sum of powers of the concentration of the reactants in the rate law expression. 1 When one of the reactant is present in large excess. 1 0R 1 35 a) $K_1 = 0.693 / t_{1/2} = 0.693 / 30 = 0.0231 min-1 ½ log K_2/K_1 = E_a / 2.303 R (1/T_1 - 1/T_2) ½ E_a = 2.303 X 8.314 log (0.0693 / 0.0231) X (300X320/320-300) ½ = 43848.5 J/mol OR 43855 J/mol OR 43.8 kJ/mol ½ b) Proper orientation ½ Energy of the colliding particles should be more than threshold energy ½ c) For a complex reaction, order of reaction is applicable while molecularity has no meaning. 1 36 a) i) Variable or multiple oxidation states / ability to form complexes / they provide large surface area for adsorption. 1 ii) Similar size/similar properties 1 1 iii) No unpaired electron/weak metallic bonding/ completely or $		iii) Due to +I effect of alkyl group electron density on N atom increases.	1		
$ \begin{array}{c} 1 & (2.307 + 6) \log (100 / 1 min^3 or 0.0072 min^1 & 1 \\ 1 & (2.303 / k) \log (A_0 / A_1) \\ 1 & (2.303 / 0.0071) \log (100/20) \\ 1 & (2.303 / 0.007) \\ 1 & (2.307 / 0.007) \\ 1 & (2.30$	35	a) $k = (2.303 / t) \log (A_o / A_t)$ $k = (2.303 / t0) \log (100 / 75)$	1/2		
$ \begin{array}{c cccc} I = (2.303 / k) \log (A_0 / A_i) \\ I = (2.303 / 0.0071) \log (100/20) \\ I = 230 \min or 226.7 \min or 223.7 \min. & (deduct ½ mark if incorrect or no unit) \\ I = 230 \min or 226.7 \min or 223.7 \min. & (deduct ½ mark if incorrect or no unit) \\ I = 11 \\ I = 230 min or 226.7 \min or 223.7 min. & (deduct ½ mark if incorrect or no unit) \\ I = 11 \\ I = 230 min or 226.7 min or 223.7 min. & I = 10 \\ I = 230 min or 226.7 min or 223.7 min. & I = 10 \\ I = 230 min or 226.7 min or 223.7 min. & I = 10 \\ I = 2300 min or 226.7 min or 223.7 min. & I = 10 \\ I = 2303 M = 10 \\ I = 2.303 M =$		$= 0.007 \text{ min}^{-1} \text{ or } 0.0071 \text{ min}^{-1} \text{ or } 0.0072 \text{ min}^{-1}$	1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$t = (2.303 / k) \log (A_o / A_t)$	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		t = (2.303 / 0.0071) log (100/20) t = 230 min or 226 7min or 223 7 min (deduct ½ mark if incorrect or no unit)	1/2		
When one of the reactant is present in large excess.10R135a) $K_1 = 0.693/t_{1/2} = 0.693/30 = 0.0231 \text{ min}^{-1}$ ½ $K_2 = 0.693/t_{1/2} = 0.693/10 = 0.0693 \text{ min}^{-1}$ ½ $\log K_2/K_1 = E_a/2.303 \text{ R} (1/T_1 - 1/T_2)$ 1 $E_a = 2.303 \text{ R} \log K_2/K_1 (T_1T_2/T_2 - T_1)$ 1 $= 2.303 \text{ X} 8.314 \log(0.0693/0.0231) \text{ X} (300X320/320-300)$ ½ $= 43848.5 \text{ J/mol OR } 43855 \text{ J/mol OR } 43.8 \text{ kJ/mol}$ ½b) Proper orientation½Energy of the colliding particles should be more than threshold energy½c) For a complex reaction, order of reaction is applicable while molecularity has no meaning.136a) i) Variable or multiple oxidation states / ability to form complexes / they provide large1iii) Similar size/similar properties1iiii)No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals1b) i) $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$ 1ii) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ 1		b) Sum of powers of the concentration of the reactants in the rate law expression.	1		
OR 1 35 a) $K_1 = 0.693/t_{1/2} = 0.693/30 = 0.0231 \text{ min}^{-1}$ ½ $K_2 = 0.693/t_{1/2} = 0.693/10 = 0.0693 \text{ min}^{-1}$ ½ $\log K_2/K_1 = E_a/2.303 \text{ R} (1/T_1 - 1/T_2)$ 1 $E_a = 2.303 \text{ R} \log K_2/K_1 (T_1T_2/T_2 - T_1)$ 2 $= 43848.5 \text{ J/mol OR } 43855 \text{ J/mol OR } 43.8 \text{ kJ/mol}$ ½ b) Proper orientation ½ Energy of the colliding particles should be more than threshold energy ½ c) For a complex reaction, order of reaction is applicable while molecularity has no meaning. 1 36 a) i) Variable or multiple oxidation states / ability to form complexes / they provide large surface area for adsorption. 1 ii) Similar size/similar properties 1 1 b) i) 2Na_2CrO_4 + 2 H^+ \Rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O 1 1 ii) 2MnO_2 + 4KOH + O_2 \Rightarrow 2K_2MnO_4 + 2H_2O 1 1		When one of the reactant is present in large excess.	1		
35 a) $K_1 = 0.693 / t_{1/2} = 0.693 / 30 = 0.0231 \text{ min}^{-1}$ $K_2 = 0.693 / t_{1/2} = 0.693 / 10 = 0.0693 \text{ min}^{-1}$ $\log K_2 / K_1 = E_a / 2.303 \text{ R} (1 / T_1 - 1 / T_2)$ $E_a = 2.303 \text{ R} \log K_2 / K_1 (T_1 T_2 / T_2 - T_1)$ $= 2.303 \text{ X} 8.314 \log(0.0693 / 0.0231) \text{ X} (300X320 / 320 - 300)$ = 43848.5 J/mol OR 43855 J/mol OR 43.8 kJ/mol ½ b) Proper orientation Energy of the colliding particles should be more than threshold energy c) For a complex reaction, order of reaction is applicable while molecularity has no meaning. 1 36 a) i) Variable or multiple oxidation states / ability to form complexes / they provide large surface area for adsorption. ii) Similar size/similar properties iii)No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals 1 b) i) 2Na_2CrO_4 + 2 H^+ \Rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O ii) 2MnO_2 + 4KOH + O_2 \Rightarrow 2K_2MnO_4 + 2H_2O 1		OR	T		
K2= 0.693/ $t_{1/2}= 0.693 / 10 = 0.0693 \min^{14}$ y_2 log K2/K1 = Ea /2.303 R (1/ T1 -1/ T2)1Ea = 2.303 R log K2/K1 (T1T2/T2-T1)1= 2.303 X 8.314 log(0.0693/0.0231) X (300X320/320-300) y_2 = 43848.5 J/mol OR 43855 J/mol OR 43.8 kJ/mol y_2 b) Proper orientation y_2 Energy of the colliding particles should be more than threshold energy y_2 c) For a complex reaction, order of reaction is applicable while molecularity has no meaning.136a) i) Variable or multiple oxidation states / ability to form complexes / they provide large1iii) Similar size/similar properties1iiii) No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals1b) i) 2Na_2CrO_4 + 2 H ⁺ \Rightarrow Na_2Cr_2O_7 + 2 Na ⁺ + H2O1ii) 2MnO_2 + 4KOH + O_2 \Rightarrow 2K2MnO_4 + 2H2O1	35	a) $K_1 = 0.693 / t_{1/2} = 0.693 / 30 = 0.0231 min^{-1}$	1/2		
$\begin{array}{c c c c c c c } & \log K_2/K_1 = E_a/2.303 \ R (1/T_1 - 1/T_2) & 1 \\ & E_a = 2.303 \ R \log K_2/K_1 (T_1T_2/T_2 - T_1) & 1 \\ & = 2.303 \ X \ 8.314 \ \log(0.0693/0.0231) \ X (300X320/320 - 300) & 1/2 \\ & = 43848.5 \ J/mol \ OR \ 43855 \ J/mol \ OR \ 43.8 \ KJ/mol & 1/2 \\ & & & & & & & & & & & & & & & & & & $		$K_2 = 0.693 / t_{1/2} = 0.693 / 10 = 0.0693 min^{-1}$	1/2		
$ \begin{array}{c} E_{a} = 2.303 \ R \log K_2/K_1 \ (T_1T_2/T_2-T_1) \\ = 2.303 \ X \ 8.314 \ log(\ 0.0693/0.0231) \ X \ (\ 300X320/320\text{-}300) \\ = 43848.5 \ J/mol \ OR \ 43855 \ J/mol \ OR \ 43.8 \ KJ/mol \\ \ b \ Proper orientation \\ = 43848.5 \ J/mol \ OR \ 43855 \ J/mol \ OR \ 43.8 \ KJ/mol \\ \ b \ Proper orientation \\ = Energy of the colliding particles should be more than threshold energy \\ \mathsf{c \ c \ For a complex reaction, order of reaction is applicable while molecularity has no meaning. \\ 1 \\ \hline \mathsf{a \ a \ a \ i \ i \ Variable or multiple oxidation states / ability to form complexes / they provide large \\ \mathsf{surface area for adsorption. \\ ii \ Similar size/similar properties \\ iii No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals \\ \mathsf{b \ i \ 2MnO_2 + 2 \ H^+ \ \ Na_2 Cr_2 O_7 + 2 \ Na^+ + H_2 O \\ \\ ii \ 2MnO_2 + 4 KOH + O_2 \ \ \ 2K_2 MnO_4 + 2H_2 O \\ \end{array} $		$\log K_2/K_1 = E_a/2.303 R (1/T_1 - 1/T_2)$	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$E_a = 2.303 \text{ R} \log K_2/K_1 (T_1T_2/T_2-T_1)$			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$= 2.303 \times 8.314 \log(0.0693/0.0231) \times (300X320/320-300)$	1/2		
D)Proper orientation $\frac{7}{2}$ Energy of the colliding particles should be more than threshold energy $\frac{7}{2}$ c)For a complex reaction, order of reaction is applicable while molecularity has no meaning.136a)i) Variable or multiple oxidation states / ability to form complexes / they provide large136a)i) Variable or multiple oxidation states / ability to form complexes / they provide large1ii) Similar size/similar properties1iii) No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals1b)i) $2Na_2CrO_4 + 2 H^+ \Rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$ 1ii) $2MnO_2 + 4KOH + O_2 \Rightarrow 2K_2MnO_4 + 2H_2O$ 1		= 43848.5 J/mol OR 43855 J/mol OR 43.8 kJ/mol	1/2		
SolutionSolutionSolutionSolution36a)i) Variable or multiple oxidation states / ability to form complexes / they provide large136a)i) Variable or multiple oxidation states / ability to form complexes / they provide large1ii) Similar size/similar properties1iii) No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals1b)i) $2Na_2CrO_4 + 2 H^+ \Rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$ 1ii) $2MnO_2 + 4KOH + O_2 \Rightarrow 2K_2MnO_4 + 2H_2O$ 1		D) Proper orientation	1/2		
36a) i) Variable or multiple oxidation states / ability to form complexes / they provide large136a) i) Variable or multiple oxidation states / ability to form complexes / they provide large1ii) Similar size/similar properties1iii) No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals1b) i) $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$ 1ii) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ 1		c) For a complex reaction, order of reaction is applicable while molecularity has no meaning	72 1		
36a)i) Variable or multiple oxidation states / ability to form complexes / they provide large136a)i) Variable or multiple oxidation states / ability to form complexes / they provide large1a)surface area for adsorption.1ii) Similar size/similar properties1iii) No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals1b)i) $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$ 1ii) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ 1		cy i of a complex reaction, order of reaction is applicable while molecularity has no meaning.	-		
surface area for adsorption.1ii) Similar size/similar properties1iii) No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals1b) i) $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$ 1ii) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ 1	36	a) i) Variable or multiple oxidation states / ability to form complexes / they provide large	1		
i) Similar Size/Similar properties1iii) No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals1b) i) $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$ 1ii) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ 1		surface area for adsorption.	1		
b) i) $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$ ii) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ 1		iii)No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals	1		
i) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ 1		b) i) $2Na_2CrO_4 + 2H^+ \rightarrow Na_2Cr_2O_7 + 2Na^+ + H_2O_1$	1		
		ii) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$	1		

	(Balancing may be ignored in both above reactions)			
36	OR a) i) Ti^{3+} has an unpaired electron while there are no unpaired electrons in Sc^{3+}			
30	ii) Stable t_2g^3 of Cr^{3+} ion			
	b) 1. Both show variable oxidation states			
	 Both show f-f transitions Electrons of f-orbital in both show poor shielding effect 	1		
	4. both have common +3 oxidation state			
	5. both show contraction in atomic radii. (any two suitable differences)			
	c) $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$			
27	(i) 2 hydroxy 2 nhonylprononol (1		
57		1		
	/ C ₆ H ₅ CH(OH)CH ₂ CHO			
	(ii) Phenyl hydrazone of henzaldehyde /			
	$C_{\alpha}H_{\alpha}CH=N-NHC_{\alpha}H_{\alpha}$	1		
	(iii)Sodium benzoate and benzyl alcohol /			
	and			
	b) (i) On besting with NSOH and $L : CH_CH_CHCOCH_s$ will form vellow ant of CHL while	1		
	other compound doesn't.	-		
	(ii) On adding NaHCO ₃ . Benzoic acid produces brisk effervescence while other	1		
	compound doesn't.			
	(or any other suitable chemical test)			
	OR	1		
	a) (i) $CH_3CH_2CH_3$	1		
37	(II) C_6H_6 (III) $CH_2=CH_2CHO$	1		
	b) $C_6H_5COCH_3 < CH_3COCH_3 < CH_3CHO < HCHO$	1		
	NO ₂			
	$CH_3 - CH = NNH $			
		1		

Marking scheme – 2020

CHEMISTRY (043)/ CLASS XII

56/5/3

Q.No	Expected Answer / Value Points	Marks
	SECTION A	
1	By gaining one electron they acquire noble gas configuration	1
2	Extremely small size/ absence of d orbital/highest electronegativity	1
3	HI>HBr>HCI>HF	1
4	Low bond dissociation enthalpy and high hydration enthalpy	1
5	X >X'	1
6	(CH ₃) ₄ C	1
7	(CH ₃) ₂ NH	1
8	$Cis-[Pt(en)_2Cl_2]^{2+}$	1
9	Zone refining	1
10	Copolymer	1
11	(b)	1
12	(b)	1
13	(c)	1
14	(a)	1
15	(d)	1
16	(D)	1
17	(D)	1
18	(C)	1
19	(A)	1
20	(D)	1
	SECTION B	
21	(a) Hexacyanidoferrate(III) / Hexacyanoferrate(III)	1/2
	d ² sp ³	1/2
	(b) Ligand which can ligate through two different atoms is called ambidentate ligand whereas	
	di- or polydentate ligand uses its two or more donor atoms to bind a single metal ion. / a	1
	chelating ligand forms a more stable complex as compared to an ambidentate ligand. / chelating	
	ligand forms a cyclic complex while ambidentate ligand forms a non-cyclic complex.	
22	(i)	
	Н	
		1
	O CI O	
	(ii)	
	F F	
	Xe	1
		-
23	i) NaCN acts as a leaching agent / it forms complex with $gold / [\Delta g(CN)_{2}]^{2}$	1
23	$4Au + 8CN + 2H_2O + O_2 \rightarrow 4 [Au(CN_2)] + 4OH - (Balancing may be ignored)$	
	ii) CO acts as a reducing agent	1
	OR	-

23	It is leached out using acid or bacteria	1		
	Electrolytic refining	1		
24	(i) Glycol and terephthalic acid /	1/2+1/2		
	$HOH_2C - CH_2OH$ HOOC \sim COOH			
	(ii) Melamine and formaldehyde/			
	$H_2N \bigvee^{N} NH_2$			
	N N			
	NH HCHO			
25	 The accumulation of molocular species at the surface rather than in the hulk of a solid or 	1+1⁄2		
23	• The accumulation of molecular species at the surface rather than in the burk of a solid of liquid. Example: adsorption of gases on surface of active charcoal (or any other suitable	17/2		
	example)			
	 Adsorption of reactants occurs on surface of catalyst and reaction takes place. 	1/2		
	OR			
25	A state of continuous zig-zag motion of particles.	1		
	• Unbalanced bombardment of the particles by the molecules of the dispersion medium.	1/2		
	• The Brownian movement has a stirring effect which does not permit the particles to settle.	/2		
26				
	• For a solution of volatile liquids, the partial vapour pressure of each component of the	1		
	solution is directly proportional to its mole fraction present in solution.			
	• If we compare the equations for Raoult's law and Henry's law, it can be seen that the			
	partial pressure of the volatile component or gas is directly proportional to its mole			
27	fraction in solution.	1/		
27	destroys microorganisms.	/2		
	Example: Penicillin/Aminoglycosides/Ofloxacin	1/2		
	(ii) Prevent spoilage of food due to microbial growth.	1/2 1/2		
	Example: table salt/sugar/vegetable oils/sodium benzoate/salts of sorbic acid/salt of propanoic acid.	/2		
	SECTION C			
28	i) $CH_3 CH_2 CH_2 OH$	1		
	$(CH_3)_2C=CH_2$ (iii)	1		
		1		
	\sim $CH_{21} + \sim$ OH			
28	(i) OR			
	\overline{O} Na ⁺ \overline{O} Na ⁺ OH			
	$\xrightarrow{\text{CHCl}_3 + \text{ aq NaOH}} \xrightarrow{\text{CHCl}_2} \xrightarrow{\text{NaOH}} \xrightarrow{\text{CHO}} \xrightarrow{\text{H}^+} \xrightarrow{\text{CHO}} \xrightarrow{\text{CHO}}$	1		
	(Intermediate compound in above equation may be ignored)			
	(ii)HCHO $\xrightarrow{1. CH_3WgBI}$ CH ₃ CH ₂ OH	1		
		T		
	$(iii) c_6 \pi_5 \cup \pi + C \pi_3 \cup U \cup \pi + C_6 \pi_5 \cup U \cup C \pi_3$ (or any other suitable method)	1		
29	A: $(CH_3)_2 C=CH_2$ B: $(CH_3)_2 CBrCH_3$ C: $(CH_3)_3 C - C(CH_3)_3$	½ X6		
	D: $(CH_3)_2 CHCH_2MgBr$ E: $(CH_3)_2 CHCH_3$ F: $(CH_3)_2 CHCH_2OC_2H_5$			

30	$\Delta T_f = iK_f m$			1/2	
	$0.068 = i \times 1.86 \times 0.01$			1/2	
	i = 3.65 or 3.656			1/2	
	$AlCl_3 \rightarrow Al^{3+} + 3 Cl^{-}$				
	1 0 0				
	1-α α 3α				
	$\alpha = i - 1/n - 1$			1/2	
	$\alpha = .883 \text{ or } 0.885$				
	88.3% or 88.5% (or any other s	suitable/ correct method)		1	
31	(i) Deoxyribose sugar , Nitrogenou	is base and phosphoric acid		1	
	(ii) Gluconic acid /				
	СООН			1	
	(CHOH).				
	CH_2OH			1	
	(iii) 2° and 3° structures are destroy	/ed.		T	
32	m=ZIt			1/2	
	2 = 63.5 x 2 x t/2x96500			1/2	
	t = 3039.4 s			1/2	
	$m_1/m_2 = eq wt_1/eq wt_2$			1/2	
	$2/11_2 = 03.5/2/05/2$	r quitable (apprent mathed)		/2 1/	
	$m_2 = 2.05 \text{ g}$ (or any other suitable/ correct method)				
33					
55	Lyophobic sol	Lyophilic sol			
	Interaction between dispersed phase	nteraction between dispersed phase and		1	
	and dispersion medium are weak c	dispersion medium are strong			
	Linstable s	stable		1	
	irreversible	reversible		1	
	Can easily be coagulated	Can't easily be coagulated		-	
	(any three from above differences)	(or any other suitable differ	ence)		
			-		
		OR			
33	i) Lyophilic colloids have a unique p	property of protecting lyophobic colloids./ L	yophilic	1	
	colloids form a layer around the l	lyophobic colloids to protect the lyophobic	colloid from		
	ii) Botantial difference between the	it coagulation.	ito chargos of a	1	
	colloid	e inted layer and the diffused layer of oppos	ite charges of a	T	
	iii) Substances used for stabilisation	of an emulsion.		1	
				-	
34	i) Aniline is a Lewis base and anhy	ydrous AlCl $_3$ the catalyst is a Lewis acid wh	nich form a	1	
	ii) Aryl balides do not undergo pucle	eophilic substitution with the anion formed	by	1	
	phthalimide.	coprime substitution with the amon formed	Sy	-	
	iii) Due to +I effect of alkyl group electron density on N increases.			1	
		SECTION D			
35	a) (i) 3-hydroxy-3-phenylpropanal /				
	н "			1	
	•				
	/ C ₆ H₅CH(OH)CH₂CHO				

	(ii) Phenyl hydrazone of benzaldehyde /	1
	$C_6H_5CH=N-NHC_6H_5$	
	(iii)Sodium benzoate and benzyl alcohol /	
	ОН	
	O ⁻ Na ⁺	1/2+1/2
	and	/21/2
	b) (i) On heating with NaOH and I_2 : CH ₂ CH=CHCOCH ₂ will form vellow ppt of CHI ₂	1
	while other compound doesn't .	
	(ii) On adding NaHCO ₃ . Benzoic acid produces brisk effervescence while other	1
	compound doesn't.	
	(or any other suitable chemical test)	
35		1
	(i) C_6H_6	1
	(iii) CH ₂ =CH-CH ₂ CHO	1
	b) $C_6H_5COCH_3 < CH_3COCH_3 < CH_3CHO < HCHO$	1
	NO	
	c)	
	$CH_3 - CH = NNH - NO_2$	1
36	a) $k = (2.303 / t) \log ([A] / [A])$	1/2
50	$k = (2.303 / 40) \log (100 / 75)$	/2
	$= 0.007 \text{ min}^{-1} \text{ or } 0.0071 \text{ min}^{-1} \text{ or } 0.0072 \text{ min}^{-1}$	1
	$t = (2.303 / K) \log ([A]_0 / [A]_t)$ $t = (2.303 / 0.0071) \log (100/20)$	1/
	t =230 min or 226.7 min or 223.7 min. (1/2 mark deducted for incorrect or no unit)	¹ /2
	b) Sum of powers of the concentration of the reactants in the rate law expression.	1
	When one of the reactant is present in large excess.	1
	a) $K_1 = 0.693 / t_{1/2} = 0.693 / 30 = 0.0231 \text{ min}^{-1}$	1/
36	$K_2 = 0.693 / t_{1/2} = 0.693 / 10 = 0.0693 \text{ min}^{-1}$	1/2 1/2
50	$\log K_2/K_1 = E_a/2.303 R (1/T_1 - 1/T_2)$	1
	$E_a = 2.303 \text{ R} \log K_2/K_1 (T_1T_2/T_2-T_1)$	
	= 2.303 X 8.314 log(0.0693/0.0231) X (300X320/320-300)	1/2
	= 43848.5 J/MOLOR 43855 J/MOLOR 43.8 KJ/MOL	1/2 1/2
	Energy of the colliding particles should be more than threshold energy	1/2
	c) For a complex reaction, order of reaction is applicable while molecularity has no meaning.	1
37	a) i) Variable or multiple oxidation states / ability to form complexes / they provide large	1
	surface area for adsorption.	1
	iii)No unpaired electron/weak metallic bonding/ completely or fully filled d orbitals	1
	b) i) $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$	1
	ii) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$	1
77	(Balancing may be ignored in both above reactions)	
5/	UK a) i) Ti^{3+} has an unpaired electron while there are no unpaired electrons in Sc^{3+}	1
	ii) Stable t_2g^3 of Cr^{3+} ion	1
		_
	b) 1. Both show variable oxidation states	1

2. Both show f-f transitions	1
3. Electrons of f-orbital in both show poor shielding effect	
4. both have common +3 oxidation state	
5. both show contraction in atomic radii. (any two suitable differences)	
c) $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	1