MOCK TEST-8

Class: XII
Time: 3 Hours.

Max. Marks: 360

IMPORTANT INSTRUCTIONS

1. The question paper consists of ' $\mathbf{9 0}$ ' objective type questions. There are ' $\mathbf{3 0}$ ' questions each in Physics , Chemistry and Mathematics respectively. Please fill the OMR answer Sheet accordingly and carefully.
2. Each question has four choices (1), (2), (3) and (4) out of which ONLY ONE is correct.
3. You will be awarded 4 marks for each question, if you have darkened only the bubble corresponding to the correct answer and zero mark if no bubble are darkened. In all other cases, minus one ($\mathbf{- 1}$) mark will be awarded.
4. There is only one correct response for each question. Filling up more than one response in each question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction 3 above.
5. Use Black or Blue Ball Point Pen only for filling particulars.
6. Use of Calculator, Log Table, Slide Rule and Mobile is not allowed.
7. Rough work is to be done on the space provided at the bottom and in end of the booklet for this purpose in the Test Booklet only.
8. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator. However, the candidates are allowed to take away this Test Booklet with them.
9. Do not fold or make any stray marks on the Answer Sheet.

Corporate Office : A-10, "BANSAL TOWER", Road No.-1, I.P.I.A., Kota-324005 (Raj.) INDIA
Tel.: (0744) 2791000
Helpline: 09571042038 | Email: dlpd@bansal.ac.in, dlpd.care@bansal.ac.in | website : www.bansal.ac.in

USEFUL DATA

Atomic weights: $\mathrm{Al}=27, \mathrm{Mg}=24, \mathrm{Cu}=63.5, \mathrm{Mn}=55, \mathrm{Cl}=35.5, \mathrm{O}=16, \mathrm{H}=1, \mathrm{P}=31, \mathrm{Ag}=108, \mathrm{~N}=14$, $\mathrm{Li}=7, \mathrm{I}=127, \mathrm{Cr}=52, \mathrm{~K}=39, \mathrm{~S}=32, \mathrm{Na}=23, \mathrm{C}=12, \mathrm{Br}=80, \mathrm{Fe}=56, \mathrm{Ca}=40, \mathrm{Zn}=65.5, \mathrm{Ti}=48$,
$\mathrm{Ba}=137, \mathrm{U}=238, \mathrm{Co}=59, \mathrm{~B}=11, \mathrm{~F}=19, \mathrm{He}=4, \mathrm{Ne}=20, \mathrm{Ar}=40, \mathrm{Mo}=96$
[Take : $\ln 2=0.693$, $\ln 1.1=0.095$, $\ln 3=1.09, \mathrm{e}=1.6 \times 10^{-19}, \mathrm{~m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$]
Take: $\epsilon_{0}=8.85 \times 10^{-12} C^{2} / \mathrm{Nm}^{2}, g=10 \mathrm{~m} / \mathrm{s}^{2}, S_{\text {water }}=1 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}, \mathrm{L}_{\text {ice }}=\mathbf{8 0} \mathrm{cal} / \mathrm{gm} ., \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ unless otherwise stated

PMYSICS

Q. 1 The wavelength corresponding to maximum spectral radiancy of a black body A is $\lambda_{\mathrm{A}}=5000 \AA$. Consider another black body B, whose surface area is twice that of A and total radiant energy by B is 16 times that emitted by A . The wavelength corresponding to maximum spectrum radiancy for B will be
(1) 5000
$(2)^{3 / 4} \AA$
(2) $2500 \AA$
(3) $10,000 \AA$
(4) $5000(2)^{-3 / 4} \AA$
Q. 2 The wavelength of characteristic $\mathrm{K}_{\alpha}-$ line emitted by a hydrogen like element is 0.32 Å. The wavelength of the K_{β}-line emited by the same element will be
(1) $0.25 \AA$
(2) $0.27 \AA$
(3) $0.30 \AA$
(4) $0.35 \AA$
Q. 3 An open pipe of length 33 cm resonates to a frequency of 1000 Hz . The mode of vibration is: (velocity of sound $=330 \mathrm{~m} / \mathrm{s}$)
(1) Fundamental
(2) The $2^{\text {nd }}$ harmonic
(3) The $3^{\text {rd }}$ harmonic
(4) The $4^{\text {th }}$ harmonic
Q. 4 At a moment $(\mathrm{t}=0)$, when the charge on capacitor C_{1} is zero, the switch is closed. If I_{0} be the current through inductor at $t=0$, for $\mathrm{t}>0$
(1) maximum current through inductor equals $\mathrm{I}_{0} / 2$.
(2) maximum current through inductor equals $\frac{\mathrm{C}_{1} \mathrm{I}_{0}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$.

(3) maximum charge on $\mathrm{C}_{1}=\frac{\mathrm{C}_{1} \mathrm{I}_{0} \sqrt{L C_{2}}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$.
(4) maximum charge on $\mathrm{C}_{1}=\mathrm{C}_{1} \mathrm{I}_{0} \sqrt{\frac{\mathrm{~L}}{\mathrm{C}_{1}+\mathrm{C}_{2}}}$.
Q. 5 A ring of mass mand radius R rolls on a horizontal rough surface without slipping due to an applied force ' F '. The friction force acting on ring is :-
(1) $\frac{F}{3}$
(2) $\frac{2 F}{3}$
(3) $\frac{F}{4}$
(4) Zero

Q. 6 A positive charge q is projected in magnetic field of width $\frac{\mathrm{mv}}{\sqrt{2} \mathrm{qB}}$ with velocity v as shown in figure. Then time taken by charged particle to emerge from the magnetic field is

(1) $\frac{m}{\sqrt{2} q B}$
(2) $\frac{\pi m}{4 q B}$
(3) $\frac{\pi m}{2 q B}$
(4) $\frac{\pi m}{\sqrt{2} q B}$
$\stackrel{m v}{\sqrt{2 q B}}$
Q. 7 A very long current carrying wire is placed along z-axis having current of magnitude i_{1} towards negative z-axis. A semicircular wire of radius R and having current i_{2} is placed in $x-y$ plane, such that line joining two end points of the semicircular wire passes through long wire as shown in figure. Nearest distance of semicircular wire from long wire is R. Net magnetic force on semicircular wire will be

(1) $\frac{\mu_{0} i_{1} i_{2}}{2 \pi} \ln 3$
(2) $\frac{\mu_{0} \mathrm{i}_{1} \mathrm{i}_{2}}{2 \pi} \ln \frac{3}{2}$
(3) zero
(4) $\frac{\mu_{0} i_{1} i_{2}}{2 \pi}$
Q. 8 A heater boils a certain quantity of water in time t_{1}. Another heater boils the same quantity of water in time t_{2}. If both heaters are connected in series, the combination will boil the same quantity of water in time
(1) $\frac{1}{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
(2) $\left(t_{1}+t_{2}\right)$
(3) $\frac{t_{1} t_{2}}{\left(t_{1}+t_{2}\right)}$
(4) $\sqrt{t_{1} t_{2}}$
Q. 9 A 500 W heating unit is designed to operate from a 115 volt line. If the line voltage drops to 110 volt, the percentage drop in heat output will be
(1) 10.20%
(2) 8.1%
(3) 8.6%
(4) 7.6%
Q. 10 A black body emits radiation at the rate P when its absolute temperature is T . At this temperature the wavelength at which the radiation has maximum spectral emissive power is λ_{0}. If at another temperature T^{\prime} the power radiated is P^{\prime} and wavelength at maximum spectral emissive power is $\frac{\lambda_{0}}{2}$ then
(1) $\mathrm{P}^{\prime} \mathrm{T}^{\prime}=32 \mathrm{PT}$
(2) $\mathrm{P}^{\prime} \mathrm{T}^{\prime}=16 \mathrm{PT}$
(3) $\mathrm{P}^{\prime} \mathrm{T}^{\prime}=8 \mathrm{PT}$
(4) $\mathrm{P}^{\prime} \mathrm{T}^{\prime}=4 \mathrm{PT}$
Q. 11 n identical charge particle are placed on the vertices of a regular polygon of n sides of side length a. One of the charge particle is released from polygon. When this particle reaches a far of distance, another particle adjacent to the first particle is released. The difference of kinetic energies of both the particles at infinity is k. Magnitude of charge is
(1) $\sqrt{4 \pi \varepsilon_{0} \mathrm{ak}}$
(2) $\frac{\mathrm{k}}{4 \pi \varepsilon_{0} \mathrm{a}}$
(3) $\frac{\mathrm{k}}{\mathrm{a}}$
(4) $\sqrt{\mathrm{ka}}$
Q. 12 In the circuit shown, the capacitors C_{1} and C_{2} have capacitance C each. The switch S is closed at time $\mathrm{t}=0$. Taking $\mathrm{Q}_{0}=\mathrm{CE}$ and $\tau=\mathrm{RC}$, the charge on C_{2} after time t will be
(1) $Q_{0}\left(1-e^{-t / 2 \tau}\right)$
(2) $Q_{0}\left(1-e^{-t / \tau}\right)$
(3) $\frac{Q_{0}}{2}\left(1-e^{-t / 2 \tau}\right)$
(4) $\mathrm{Q}_{0}\left(1-\mathrm{e}^{-2 t / \tau}\right)$

Q. 13 A copper sphere is suspended in a evacuated chamber maintained at 300 K . The sphere is maintained at constant temperature of 900 K by heating electrically. A total of 300 W electric power is needed to do this. When half of the surface of the copper sphere is completely blackened, 600 W is needed to maintain the same temperature of sphere. The emissivity of copper is
(1) $\frac{1}{4}$
(2) $\frac{1}{3}$
(3) $\frac{1}{2}$
(4) 1
Q. 14 The frequency of a sonometer wire is 100 Hz . When the weights producing the tensions are completely immersed in water the frequency becomes 80 Hz and on immersing the weights in a certain liquid the frequency becomes 60 Hz . The specific gravity of the liquid is
(1) 1.42
(2) 1.77
(3) 1.82
(4) 1.21
Q. 15 A stationary source of sound is emitting waves of frequency 30 Hz towards a stationary wall. There is an observer standing between the source and the wall. If the wind blows from the source to the wall with a speed $30 \mathrm{~m} / \mathrm{s}$ then the number of beats heard by the observer is (velocity of sound with respect to wind is $330 \mathrm{~m} / \mathrm{s}$)
(1) 10
(2) 3
(3) 6
(4) zero
Q.16 A3.6 m long vertical pipe is filled completely with a liquid. A small hole is drilled at the base of the pipe due to which liquids starts leaking out. This pipe resonates with a tuning fork. The first two resonances occur when height of water column is 3.22 m and 2.34 m respectively. The area of cross-section of pipe is
(1) $25 \pi \mathrm{~cm}^{2}$
(2) $100 \pi \mathrm{~cm}^{2}$
(3) $200 \pi \mathrm{~cm}^{2}$
(4) $400 \pi \mathrm{~cm}^{2}$
Q. 17 A closed organ pipe of length L is vibrating in its first overtone. There is a point Q inside the pipe at a distance $7 \mathrm{~L} / 9$ from the open end. The ratio of pressure amplitude at Q to the maximum pressure amplitude in the pipe is
(1) $1: 2$
(2) $2: 1$
(3) $1: 1$
(4) $2: 3$
Q. 18 A simple pendulum is suspended from the ceiling of an empty box falling in air near earth surface. The total mass of system is M. The box experiences air resistance $\vec{R}=-k \vec{v}$ where v is the velocity of box and k is a positive constant. After some time it is found that period of oscillation of pendulum becomes double the value when it would have suspended from a point on earth. The velocity of box at that moment (take g in air same as on earth's surface)
(1) $\frac{\mathrm{Mg}}{4 \mathrm{k}}$
(2) $\frac{M g}{k}$
(3) $\frac{\mathrm{Mg}}{2 \mathrm{k}}$
(4) $\frac{2 \mathrm{Mg}}{\mathrm{k}}$
Q. 19 Two blocks A and B, each of mass m are connected by means of a pulleyspring system on a smooth inclined plane of inclination θ as shown in the figure. All the pulleys and spring are ideal. Now, B is slightly displaced from its equilibrium position. It starts to oscillate. Time period of oscillation of B will be (Take $\mathrm{m}=4 \mathrm{~kg}, \mathrm{~K}=5 \mathrm{~N} / \mathrm{m}, \pi=3.14$)
(1) 3.14 s
(2) 6.28 s
(3) 4.28 s
(4) 5.14 s

Q. 20 In the given circuit the power generated in 1Ω resistance will be maximum for 'x'equal to:
(1) 1Ω
(2) 3Ω
(3) $2 / 3 \Omega$
(4) 0Ω

Q. 21 A metallic square plate $A B C D$ is suspended vertically with a pair of sides horizontal by an ideal string as shown in the figure. A beaker of water is brought below the plate and raised till the plate is completely immersed and the level of water is well above the plate. If the point of support is slowly raised vertically at constant velocity, the graph of tension T in the string against the displacement S of the point of support is best represented by

(1)

(2)

(3)

(4)

SPACEFOR ROUGH WORK
Q. 22 A satellite is launched into a circular orbit of radius R around the earth. A second satellite is launched into an orbit of radius (1.01)R. The period of the second satellite is larger than the first one by approximately
(1) 0.7%
(2) 1%
(3) 1.5%
(4) 3%
Q. 23 Moment of inertia of a uniform symmetric plate as shown in figure about x -axis is I. Moment of inertia of this plate about an axis passing through centre of plate O and perpendicular to the plane of plate is
(1) 2 I
(2) I
(3) $I / 2$
(4) I/4

Q. 24 A uniform body of mass M of radius R has a small mass m attached at edge as shown in the figure. The system is placed on a perfectly rough horizontal surface such that mass m is at the same horizontal level as the centre of body. It is assumed that there is no slipping at point A . If I_{A} is the moment of the inertia of combined system about point of contact A then the normal reaction at point A just after the system is released from rest is $\left(M=6 \mathrm{~kg}, \mathrm{~m}=2 \mathrm{~kg}, \mathrm{I}_{\mathrm{A}}=4 \mathrm{~kg} \mathrm{~m}{ }^{2}, \mathrm{R}=1 \mathrm{~m}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

(1) 60 N
(2) 80 N
(3) 75 N
(4) 70 N
Q. 25 A $1 \mu \mathrm{~F}$ capacitor is connected in the circuit shown below. The e.m.f. of the cell is 3 volts and internal resistance is 0.5 ohms. The resistors R_{1} and R_{2} have values 4 ohms and 1 ohm respectively. The charge on the capacitor in steady state must be :
(1) $2 \mu \mathrm{C}$
(2) $1 \mu \mathrm{C}$
(3) $1.33 \mu \mathrm{C}$
(4) zero

Q. 26 Energy due to position of a particle is given by, $U=\frac{\alpha \sqrt{y}}{y+\beta}$, where α and β are constants, y is distance. The dimensions of $(\alpha \times \beta)$ are
(1) $\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right]$
(2) $\left[\mathrm{M}^{1 / 2} \mathrm{~L}^{3 / 2} \mathrm{~T}^{-2}\right]$
(3) $\left[\mathrm{M}^{0} \mathrm{~L}^{-7 / 2} \mathrm{~T}^{0}\right]$
(4) $\left[\mathrm{ML}^{7 / 2} \mathrm{~T}^{-2}\right]$
Q. 27 A2 2 m wide truck is moving with a uniform speed $\mathrm{v}_{0}=8 \mathrm{~m} / \mathrm{s}$ along a straight horizontal road. A pedestrian starts to cross the road with a uniform speed v when the truck is 4 m away from him. The minimum value of v so that he can cross the road safely is

(1) $2.62 \mathrm{~m} / \mathrm{s}$
(2) $4.6 \mathrm{~m} / \mathrm{s}$
(3) $3.57 \mathrm{~m} / \mathrm{s}$
(4) $1.414 \mathrm{~m} / \mathrm{s}$
Q. 28 A block of mass m released on an inclined plane of inclination 30° and mass M height of the block varies with time as $\mathrm{h}=1.5-1.5 \mathrm{t}^{2}$. $(\mathrm{t}=$ time in second $)$. What is the acceleration of M ?

(1) $1 \mathrm{~m} / \mathrm{s}^{2}$
(2) $\frac{2}{\sqrt{3}} \mathrm{~m} / \mathrm{s}^{2}$
(3) $3 \mathrm{~m} / \mathrm{s}^{2}$
(4) $2 \mathrm{~m} / \mathrm{s}^{2}$
Q. 29 A body of mass m was slowly taken up the hill by a force F which at each point was directed along the tangent to the trajectory as shown in the figure. Find the work performed by this force. (The height of the hill is h, the length of its base is l and the coefficient of friction is μ)

(1) $\mathrm{mgh}+\mu \mathrm{mg}\left(\sqrt{l^{2}+\mathrm{h}^{2}}\right)$
(2) $\mathrm{mgh}+\mu \mathrm{mg} l$
(3) $\mathrm{mgh}-\mu \mathrm{mg}\left(\sqrt{l^{2}+\mathrm{h}^{2}}\right)$
(4) $\mathrm{mgh}-\mu \mathrm{mg} l$
Q. 30 The position vector of a particle is given as $\vec{r}=\left(t^{2}-4 t+6\right) \hat{i}+\left(t^{2}\right) \hat{j}$. The time after which the velocity vector and acceleration vector becomes perpendicular to each other is equal to
(1) 1 sec
(2) 2 sec
(3) 1.5 sec
(4) not possible

CHEMISTRY

Q. 31 The first and second ionisation potential of helium atoms are 24.6 eV and 54.4 eV respectively. The energy required to convert 1 mole of He atoms into He^{2+} ions in kJ is :
(1) 758.4
(2) 7584
(3) 7.584
(4) 75.84
Q. 32

Major product is :
(1)

(2)

(3)

(4) $\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
Q. 33 For the reaction,

$$
\mathrm{AB}_{2}(\mathrm{~g})+\mathrm{A}(\mathrm{~s}) \rightleftharpoons \mathrm{B}_{2}(\mathrm{~g})+\mathrm{A}_{2}(\mathrm{~g})
$$

following graph is obtained

where
$\mathrm{K} \rightarrow$ Equilibrium Constant
$\mathrm{T} \rightarrow$ Temperature in Kelvin
Which of the following will increase the concentration of AB_{2} at equilibrium.
(1) Adding more of $\mathrm{A}(\mathrm{s})$
(2) Decreasing temperature
(3) Adding inert gas at constant volume
(4) Decreasing the volume of container
Q. 34 What will be the dihedral angle present in hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ in solid phase.
(1) 111.5°
(2) 180°
(3) 90.2°
(4) 0°
Q. 35 Amongst butane, butan-1-ol and butanal the decreasing order of boiling point is -
(1) butane $>$ butan-1-ol $>$ butanal
(2) butanal $>$ butan-1-ol $>$ butane
(3) butan-1-ol $>$ butanal $>$ butane
(4) butane $>$ butanal $>$ butan-1-ol
Q. 36 The degree of hydrolysis of 0.1 M NaCN solution is 4%. What will be the solubility of $\mathrm{Al}(\mathrm{OH})_{3}$ in this solution. $\left[\mathrm{K}_{\text {sp Al }(\mathrm{OH})_{3}}=6.4 \times 10^{-20}\right.$]
(1) $0.04 \mathrm{~mol} \mathrm{~L}^{-1}$
(2) $10^{-15} \mathrm{~mol} \mathrm{~L}^{-1}$
(3) $10^{-12} \mathrm{~mol} \mathrm{~L}^{-1}$
(4) $1.6 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$
Q. 37 Borohydrides are prepared by reaction of metal hydrides with $\mathrm{B}_{2} \mathrm{H}_{6}$ in diethyl ether. Select incorrect statement:
(1) Hybridisation of Boron changes
(2) Metal M can be Li or Na
(3) Geometry around Boron is Tetrahedral in both reactant and product
(4) Boron hydrides are used as reducing agent
Q. $38 \mathrm{PhNH}_{2}$ and PhNHMe can be differentiated by :
(1) $\mathrm{CHCl}_{3}, \mathrm{KOH}$
(2) $\mathrm{NaNO}_{2}, \mathrm{HCl}$
(3) both
(4) none of these
Q. 39 Surfactant molecules can cluster together as micelles, which are colloid sized cluster of molecules. Micelles form only above critical micelle concentration (CMC) and above certain temperature called Kraft temperature. $\Delta \mathrm{H}$ of micelle formation can be positive or negative. Which of the following is NOT TRUE about micelle formation?
(1) $\Delta \mathrm{S}$ of micelle formation is positive
(2) the hydrophobic part lie towards interior of micelle
(3) the hydrophilic part lie towards surface of micelle
(4) $\Delta \mathrm{S}$ of micelle formation is negative
Q. 40 Consider the following complex :

$$
\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{Cl})\right]
$$

Select the correct statement:
(1) All stereoisomers are optically inactive
(2) Number of geometrical isomers $=4$
(3) Total 3 stereoisomers possible
(4) All stereoisomers are optically active
Q. 41 Which of the following is not a condensation polymer?
(1) Glyptal
(2) Nylon-66
(3) Dacron
(4) Teflon
Q. 42 Consider the following cell

$$
\mathrm{Pt}\left|\mathrm{H}_{2}\left(\mathrm{P}_{1} \mathrm{~atm}\right)\right| \mathrm{H}^{+}\left(\mathrm{M}_{1}\right)| | \mathrm{H}^{+}\left(\mathrm{M}_{2}\right)\left|\mathrm{H}_{2}\left(\mathrm{P}_{2} \mathrm{~atm}\right)\right| \mathrm{Pt}
$$

Where P_{1} and P_{2} are pressures. M_{1} and M_{2} are molarities.
What will be the emf of cell at $25^{\circ} \mathrm{C}$ if $\mathrm{P}_{1}=\mathrm{P}_{2}$ and M_{1} is 50% higher than M_{2} ?
[Take : $\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06$ and $\log \mathbf{3}=\mathbf{0 . 4 8}, \log 2=\mathbf{0} .3$]
(1) -0.0052 V
(2) -0.0108 V
(3) -0.040 V
(4) 0.0108 V
Q. 43 Which of the following properties does not belong to the complex formed in Mond's process.
(1) It is diamagnetic
(2) It follows 18 electron rule
(3) It is square planar
(4) Volatile at $100^{\circ} \mathrm{C}$
Q. 44 Incorrect statement about given carbohydrate is -

(1) Above compound is a reducing sugar.
(2) Hemi acetal group.
(3) Above compound is a non-reducing sugar.
(4) Above compound has a glycosidic linkage.
Q. 45 Identify the correct statement.
(1) Half life of first order reaction is independent of temperature
(2) For zero order reaction half life depends on initial concentration of reactant.
(3) A reactant molecule having sufficient energy must get converted into product.
(4) First order reaction must be complex
Q. 46 For carbonates of alkali metals as we move down the group what will be the correct order of covalent characters, solubility and thermal stability -
(1) Increase, Decrease, Increase
(2) Decrease, Increase, Increase
(3) Increase, Increase, Decrease
(4) Decrease, Decrease, Increase
Q. 47 The order of acidity of compounds I-IV, is -
(I)

(II)

(III)

(IV)

(1) I $<$ III $<$ II $<$ IV
(2) IV $<$ I $<$ II $<$ III
(3) III $<$ I $<$ II $<$ IV
(4) II $<$ IV $<$ III $<$ I
Q. 48 An unknown compound A dissociates at $500^{\circ} \mathrm{C}$ to give products as follows -

$$
\mathrm{A}(\mathrm{~g}) \rightleftharpoons \mathrm{B}(\mathrm{~g})+\mathrm{C}(\mathrm{~g})+\mathrm{D}(\mathrm{~g})
$$

Vapour density of the equilibrium mixture is 60 when it dissociates to the extent to 20%. What will be the molecular weight of Compound A-
(1) 120
(2) 108
(3) 134
(4) 168
Q. 49 In which octahedral complex $\mathrm{t}_{2 \mathrm{~g}}$ and e_{g} orbitals both have symmetrical electronic distribution? [where $\Delta_{0}=$ Splitting energy, $\mathrm{PE}=$ Pairing energy per pair]
(1) $\mathrm{d}^{5}\left(\Delta_{0}<\mathrm{PE}\right)$
(2) $\mathrm{d}^{4}\left(\Delta_{0}>\right.$ PE $)$
(3) $\mathrm{d}^{7}\left(\Delta_{0}<\right.$ PE $)$
(4) $\mathrm{d}^{9}\left(\Delta_{0}>\right.$ PE $)$
Q. 50 Two isomeric compounds (I) and (II) are heated with $\mathrm{HBr}-$

(I)

(II)

The products obtained are -
(1)

(2)

(3)

(4)

Q. 51 If ε_{0} be the permittivity of vacuum and r be the radius of orbit of H -atom in which electron is revolving then velocity of electron is given by :
(1) $v=\frac{e}{\sqrt{4 \pi \varepsilon_{0} \mathrm{rm}}}$
(2) $\mathrm{v}=\mathrm{e} \times \sqrt{4 \pi \varepsilon_{0} \mathrm{rm}}$
(3) $v=\frac{4 \pi \varepsilon_{0} r m}{e}$
(4) $v=\frac{4 \pi \varepsilon_{0} r m}{e^{2}}$
Q. $52 \mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$

For the above said reaction select correct statement -
(1) It is a redox reaction in which green solution of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is produced.
(2) One of the product in reaction has trigonal planer structure.
(3) Dimeric bridged tetrahedral complex is produced.
(4) Dark blue colour is obtained in reaction.
Q. 53 The number of possible enantiomeric pair(s) produced from the bromination $\left(\mathrm{Br}_{2} / \mathrm{CCl}_{4}\right)$ of (I) and (II), respectively, are -

(I)

(II)
(1) 0,1
(2) 1,0
(3) 0,2
(4) 1,1
Q. 54 When heated above $916^{\circ} \mathrm{C}$, iron changes its bcc crystalline form to fcc without the change in the radius of atom. The ratio of density of the crystal before heating and after heating is :
(1) 1.069
(2) 0.918
(3) 0.725
(4) 1.231
Q. 55 Select correct order of stability of following oxides.
(1) $\mathrm{Cl}_{2} \mathrm{O}>\mathrm{Br}_{2} \mathrm{O}>\mathrm{I}_{2} \mathrm{O}$
(2) $\mathrm{Cl}_{2} \mathrm{O}>\mathrm{I}_{2} \mathrm{O}>\mathrm{Br}_{2} \mathrm{O}$
(3) $\mathrm{I}_{2} \mathrm{O}>\mathrm{Cl}_{2} \mathrm{O}>\mathrm{Br}_{2} \mathrm{O}$
(4) $\mathrm{I}_{2} \mathrm{O}>\mathrm{Br}_{2} \mathrm{O}>\mathrm{Cl}_{2} \mathrm{O}$
Q. 56

Relationship between B and C is
(1) Chain isomers
(2) Homologus
(3) Identical
(4) No relation between them
Q. 57 For a solution of Benzene and Toluene choose the correct option from the following diagram :

$x \rightarrow$ represents mole fraction in liquid state
$\mathrm{y} \rightarrow$ represents mole fraction in vapour state
(1) At point A: $y_{\text {benzene }}=0.6$
(2) At point B : $x_{\text {toluene }}=0.1$
(3) At point A: $\mathrm{X}_{\text {toluene }}=0.4$
(4) At point B : $\mathrm{y}_{\text {benzene }}=0.1$
Q. 58 Which of the following metal nitrate can show given change.

(1) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
(2) $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$
(3) AgNO_{3}
(4) $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$
Q. 59 What is the major product of the following reaction sequence?

(1)

(2)

(3)

(4)

Q. 60 At $27^{\circ} \mathrm{C}$ the reaction,

$$
\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

proceeds spontaneously because the magnitude of-
(1) $\Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S}$
(2) $\Delta \mathrm{H}>\mathrm{T} \Delta \mathrm{S}$
(3) $\Delta \mathrm{H}<\mathrm{T} \Delta \mathrm{S}$
(4) $\Delta \mathrm{H}>0, \mathrm{~T} \Delta \mathrm{~S}<0$

MATHEMATICS

Q. 61 Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+3$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be $\mathrm{g}(\mathrm{x})=2 \mathrm{x}+1$, then $\mathrm{f}^{-1} \mathrm{og}^{-1}(23)$ is equal to
(1) 2
(2) 3
(3) $(14)^{\frac{1}{3}}$
(4) $(15)^{\frac{1}{3}}$
Q. 62 A teacher conducts quiz among the five students of his batch and distributes the answer sheets among them randomly for evaluation then the probability that there are at least two students who are not evaluating their own answer sheet, is equal to
(1) $\frac{1}{120}$
(2) $\frac{7}{120}$
(3) $\frac{119}{120}$
(4) $\frac{113}{120}$
Q. 63 Let A and B be two sets containing two and three elements respectively. The number of subsets of $\mathrm{A} \times \mathrm{B}$ having at least 2 but not more than 4 elements, is equal to
(1) 15
(2) 20
(3) 35
(4) 50
Q. 64 The eccentricity of the ellipse $3 x^{2}+4 y^{2}=12$ is changed at the rate $0.1 /$ second. The time at which it will coincide with the auxiliary circle is
(1) 2 seconds
(2) 3 seconds
(3) 5 seconds
(4) 6 seconds
Q. 65 The area of the region bounded by curves $y=e^{x}, y=e^{-x}, x=0$ and $x=1$ is
(1) $e+\frac{1}{e}$
(2) $\ln \left(\frac{4}{e}\right)$
(3) $4 \ln \left(\frac{4}{e}\right)$
(4) $e+\frac{1}{e}-2$
Q. 66 The value of $\binom{50}{5}-\binom{5}{1}\binom{40}{5}+\binom{5}{2}\binom{30}{5}-\binom{5}{3}\binom{20}{5}+\binom{5}{4}\binom{10}{5}$, is equal to
[Note : where $\binom{n}{r}$ denotes ${ }^{n} C_{r}$]
(1) 0
(2) 10^{5}
(3) -10^{5}
(4) 5^{5}
Q. 67 The radius of director circle of auxiliary circle of the ellipse $(3 x+4 y-1)^{2}+5(4 x-3 y+2)^{2}=250$ is
(1) $\sqrt{5}$
(2) $\sqrt{10}$
(3) $\sqrt{500}$
(4) $\sqrt{20}$
Q. 68 Five different digits from the set of numbers $\{1,2,3,4,5,6,7\}$ are written in a random order. The probability that 5 digit number thus formed is divisible by 9 is
(1) $\frac{1}{21}$
(2) $\frac{2}{21}$
(3) $\frac{5}{21}$
(4) $\frac{7}{21}$
Q. 69 If system of equations $2 x+k y=0, k z-2 y=0$ and $k x+2 z=0$, has non trivial solution then the value of k is
(1) -1
(2) 1
(3) 2
(4) no real value
Q. 70 The shortest distance between z axis and the line $\frac{\mathrm{x}-2}{3}=\frac{\mathrm{y}-5}{2}=\frac{\mathrm{z}+1}{-5}$ is equal to
(1) $\frac{11}{\sqrt{13}}$
(2) $\frac{17}{\sqrt{13}}$
(3) $\frac{11}{13}$
(4) $\frac{\sqrt{11}}{13}$
Q. $71 \sim \mathrm{p} \wedge \mathrm{q}$ logically equivalent to
(1) $p \rightarrow q$
(2) $q \rightarrow p$
(3) $\sim(p \rightarrow q)$
(4) $\sim(q \rightarrow p)$
Q. $72 \operatorname{Lim}_{x \rightarrow \infty} \frac{\sum_{r=1}^{10}(x+r)^{2010}}{\left(x^{1006}+1\right)\left(2 x^{1004}+1\right)}$ is equal to
(1) $\frac{1}{2}$
(2) 1
(3) 5
(4) 1005
Q. 73 If for a derivable function $f, f(0)=f(1)=0, f^{\prime}(1)=2$ and $y(x)=f\left(e^{x}\right) e^{f(x)}$, then $y^{\prime}(0)$ is equal to
(1) 0
(2) 1
(3) 2
(4) None of these
Q. 74 If $f(x)=\left(x^{2}+3 x+2\right)\left(x^{2}-7 x+a\right)$ and $g(x)=\left(x^{2}-x-12\right)\left(x^{2}+5 x+b\right)$, then the values of ' a ' and ' b ', if $(x+1)(x-4)$ is H.C.F. of $f(x)$ and $g(x)$, are
(1) $a=10, b=6$
(2) $a=4, b=12$
(3) $a=12, b=4$
(4) $a=6, b=10$
Q. 75 Coefficient of variation of two distributions are 50% and 60% and their arithmetic means are 30 and 25 , respectively. Difference of standard deviation is
(1) 1
(2) 1.5
(3) 2.5
(4) 0
Q. 76 The value of $\sum_{\mathrm{n}=0}^{100} \mathrm{i}^{\mathrm{n}!}$ is equal to
[Note : where $\mathrm{i}=\sqrt{-1}$]
(1) -1
(2) i
(3) $2 \mathrm{i}+95$
(4) $97+\mathrm{i}$
Q. 77 Let matrix $A=\left[\begin{array}{ccc}x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2\end{array}\right]$, where $x, y, z \in N$. If $|(\operatorname{adj}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))))|=4^{8} \cdot 5^{16}$, then the number of such matrices A is equal to
(1) 28
(2) 36
(3) 55
(4) 66
Q. 78 If $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \vec{b}=\hat{i}+\hat{j}, \vec{c}$ are vectors such that $\vec{a} \cdot \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 30°, then the value of $10|(\vec{a} \times \vec{b}) \times \vec{c}|$ is
(1) 17
(2) 11
(3) 13
(4) 15
Q. 79 If $\mathrm{f}(\mathrm{x})=\int_{0}^{\mathrm{x}} \frac{1}{(\mathrm{f}(\mathrm{t}))^{2}} \mathrm{dt}$ and $\int_{0}^{2} \frac{1}{(\mathrm{f}(\mathrm{t}))^{2}} \mathrm{dt}=\sqrt[3]{6}$, then $\mathrm{f}(9)$ is equal to
(1) 0
(2) 1
(3) 2
(4) 3
Q. $80 \quad$ Let $f(x)$ be derivable for all x. If $f(1)=-2$ and $f^{\prime}(x) \geq 2, \forall x \in[1,6]$, then
(1) $\mathrm{f}(6)<8$
(2) $f(6) \geq 8$
(3) $\mathrm{f}(6) \geq 5$
(4) $\mathrm{f}(6) \leq 5$
Q. 81 There are 10 stations on a circular path. A train has to stop at 3 stations such that no two stations are adjacent. The number of such selections is equal to
(1) 50
(2) 60
(3) 70
(4) 80
Q. 82 A line L varies such that length of perpendicular on it from origin O is always 4 units. If L cuts x-axis and y -axis at A and B respectively, then minimum value of $\mathrm{OA}^{2}+\mathrm{OB}^{2}$ is
(1) 16
(2) 32
(3) 64
(4) 128
Q. 83 If $\int_{0}^{a} f(2 a-x) d x=4$ and $\int_{0}^{a} f(x) d x=2$, then $\int_{0}^{2 a} f(x) d x$ is equal to
(1) 2
(2) 4
(3) 6
(4) 8
Q. 84 ABCD is a square plot. The angle of elevation of the top of a pole standing at D from A or C is 30° and that from B is θ, then $\tan \theta$ is equal to
(1) $\frac{1}{3}$
(2) $\frac{1}{\sqrt{6}}$
(3) $\frac{1}{2 \sqrt{6}}$
(4) $\frac{1}{2 \sqrt{3}}$
Q. 85 If $f(x)=\left\{\begin{array}{ll}-x^{2}+2, & x \leq 0 \\ x^{2}+\frac{15}{8}, & x>0\end{array}\right.$, then
(1) $f(x)$ increases at $x=0$
(2) $x=0$ is a point of local maximum of $f(x)$
(3) $x=0$ is a point of local minimum of $f(x)$
(4) $x=0$ is not an extremum of $f(x)$
Q. 86 The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=z$ is
(1) $\frac{20}{3}$
(2) $3 \sqrt{10}$
(3) $10 \sqrt{3}$
(4) $\frac{10}{\sqrt{3}}$
Q. 87 If $x^{2}+4 y^{2}-4=0$, then maximum value of $x^{2}-x y$ is equal to
(1) $\sqrt{5}$
(2) $2+\sqrt{5}$
(3) $2 \sqrt{5}+4$
(4) $2 \sqrt{5}-1$
Q. 88 The eccentricity of the hyperbola whose latus rectum is half of its transverse axis is
(1) $\frac{3}{\sqrt{2}}$
(2) $\frac{3}{2}$
(3) $\sqrt{\frac{3}{2}}$
(4) $\sqrt{2}$
Q. 89 If $|z-1-i|=1$, then the locus of a point represented by the complex number $5(z-i)-6$ is
(1) a circle with centre $(1,0)$ and radius 3
(2) a circle with centre $(-1,0)$ and radius 5
(3) line passing through origin
(4) line passing through $(-1,0)$
Q. 90 A parabolic mirror is kept along $\mathrm{y}^{2}=4 \mathrm{x}$ and two different light rays parallel to its axis are reflected along the same straight line. If one of the incident ray is at 4 units distance from the axis, then the distance of other incident ray from axis is
(1) 1
(2) 2
(3) 3
(4) 6

COURSE	JEE-MAIN	MOCK TEST-8 XII	TEST CODE				
NUCLEUS			1	1	2		1

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	4	2	2	4	4	2	1	2	3	1	1	2	2	2	4
Q.No.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans	2	1	1	2	4	1	3	1	4	1	4	3	2	2	1
	IOC	OC	PC												
Q.No.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans	2	1	4	3	3	3	1	3	4	1	4	2	3	3	2
	IOC	OC	PC												
Q.No.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	2	1	4	1	1	1	3	1	2	3	3	3	3	2	2
Q.No.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans	1	3	4	3	4	2	4	2	3	1	4	3	3	3	4
Q.No.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans	3	2	4	4	2	1	3	3	2	2	3	2	3	2	1

HINTS \& SOLUTIONS

PHYSICS

Q. $1 \quad \mathrm{P}=\sigma \mathrm{AT}^{4}$

$$
\Rightarrow \frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}}=\frac{\mathrm{A}_{\mathrm{A}}}{\mathrm{~A}_{\mathrm{B}}}\left(\frac{\mathrm{~T}_{\mathrm{A}}}{\mathrm{~T}_{\mathrm{B}}}\right)^{4} \Rightarrow \mathrm{~T}_{\mathrm{B}}=\mathrm{T}_{\mathrm{A}} 2^{3 / 4}
$$

as $\lambda_{\mathrm{m}} \mathrm{T}=$ constant $\Rightarrow \frac{\lambda_{\mathrm{A}}}{\lambda_{\mathrm{B}}}=\frac{\mathrm{T}_{\mathrm{B}}}{\mathrm{T}_{\mathrm{A}}}$
$\Rightarrow \lambda_{\mathrm{B}}=5000(2)^{-3 / 4} \AA$.
Q. $2 \frac{1}{\lambda_{\mathrm{k} \alpha}}=\mathrm{RZ}^{2}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right) \& \frac{1}{\lambda_{\mathrm{k}_{\mathrm{B}}}}=\mathrm{RZ}^{2}\left(\frac{1}{1^{2}}-\frac{1}{3^{2}}\right) ;$
dividing we get,

$$
\lambda_{\mathrm{k}_{\mathrm{B}}}=0.27 \AA
$$

Q. $3 \quad$ As; $\quad \frac{V}{2 \ell}=\frac{330 \times 100}{2 \times 33}$

$$
=500 \mathrm{~Hz}
$$

In second harmonic frequency $=\frac{\mathrm{V}}{\ell}$
$=1000 \mathrm{~Hz}$.
Q. $4 \quad \frac{1}{2} \mathrm{LI}_{0}{ }^{2}=\frac{1}{2}\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \mathrm{V}^{2}$,
$\mathrm{V}=\left[\frac{\mathrm{LI}_{0}^{2}}{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)}\right]^{1 / 2}$,
$\mathrm{Q}_{1}=\mathrm{C}_{1} \mathrm{~V}=\mathrm{C}_{1} \mathrm{I}_{0} \sqrt{\frac{\mathrm{~L}}{\mathrm{C}_{1}+\mathrm{C}_{2}}}$
Q. $5 \quad \mathrm{~F}+\mathrm{f}=\mathrm{ma}$

Also; $F R-f R=I \frac{a}{R}$
$\mathrm{F}-\mathrm{f}=\mathrm{ma}$
$\left[\mathrm{I}=\mathrm{mR}^{2}\right.$]
From (1) \& (2)

$$
\mathrm{f}=0
$$

Q. $6 \sin \theta=\frac{\frac{\mathrm{mv}}{\sqrt{2} \mathrm{qB}}}{\frac{\mathrm{mv}}{\mathrm{qB}}}=\frac{1}{\sqrt{2}}$

$$
\begin{aligned}
& \Rightarrow \theta=45^{\circ} \\
& \mathrm{t}=\frac{\mathrm{T}}{8}=\frac{\pi \mathrm{m}}{4 \mathrm{qB}}
\end{aligned}
$$

Q. 7 Magnetic field at a distance r from the wire will be

$$
\mathrm{B}=\frac{\mu_{0}}{2 \pi} \frac{i_{1}}{\mathrm{r}}
$$

force on the small element of length $\mathrm{d} l$ on semicircular wire is
$\mathrm{dF}=\mathrm{i}_{2} \mathrm{~d} \overrightarrow{\mathrm{l}} \times \overrightarrow{\mathrm{B}}=\mathrm{i}_{2}\left(\mathrm{dl}_{\perp}\right) \mathrm{B}=\mathrm{i}_{2} \mathrm{Bdr}$
$\left(\because \mathrm{d} l_{\perp}=\mathrm{dr}\right)$
$\mathrm{F}=\int_{\mathrm{R}}^{3 \mathrm{R}} \mathrm{i}_{2} \mathrm{Bdr}=\frac{\mu_{0}}{2 \pi} \mathrm{i}_{1} \mathrm{i}_{2} \ln 3$
Q. $8 \quad \mathrm{Q}=$ quantity of energy required
$P_{1} t_{1}=Q, P_{2} t_{2}=Q$
$P_{\text {series }}=\frac{P_{1} P_{2}}{P_{1}+P_{2}}$
$P_{\text {series }} t_{0}=Q, \quad\left(\frac{P_{1} P_{2}}{P_{1}+P_{2}}\right) t_{0}=Q$
Solving $\mathrm{t}_{0}=\mathrm{t}_{1}+\mathrm{t}_{2}$
Q. $9 \quad \mathrm{P}_{\text {consumed }}=\left(\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{V}_{\mathrm{R}}}\right)^{2} \times \mathrm{P}_{\mathrm{R}}$
$=\left(\frac{110}{115}\right)^{2} \times 500=457.46 \mathrm{~W}$
So, percentage drop in power output

$$
=\frac{(500-457.46)}{500} \times 100=8.6 \%
$$

Q. 10 For a black body, wavelength for maximum intensity:

$$
\begin{array}{lll}
& \lambda \alpha \frac{1}{\mathrm{~T}} & \& \quad \mathrm{P} \alpha \mathrm{~T}^{4} \\
\Rightarrow & \mathrm{P} \alpha \frac{1}{\lambda^{4}} \Rightarrow & \mathrm{P}^{\prime}=16 \mathrm{P} . \\
\therefore & \mathrm{P}^{\prime} \mathrm{T}^{\prime}=32 \mathrm{PT} &
\end{array}
$$

Q. $11 \frac{\mathrm{q}^{2}}{4 \pi \varepsilon_{0} \mathrm{a}}=\mathrm{k}$
Q. 12 Rearranging the circuit, we observed that C_{1} is joined directly to the cell and acquires its full charge when S is closed. It plays no part in the charging of C_{2} through R .
So, $\quad q_{2}=Q_{0}\left(1-e^{-t / \tau}\right)$

Q. $13300=\operatorname{e\sigma A}\left(900^{4}-300^{4}\right)$
$600=\frac{\sigma \mathrm{A}}{2}\left(900^{4}-300^{4}\right)+\frac{\mathrm{e} \sigma \mathrm{A}}{2}\left(900^{4}-300^{4}\right)$

$$
\begin{equation*}
\mathrm{e}=\frac{1}{3} \tag{ii}
\end{equation*}
$$

Q. $14 \mathrm{f} \propto \sqrt{\mathrm{g}}$

In water $f_{w}=0.8 f_{\text {air }}$
$\therefore \quad \frac{\mathrm{g}^{\prime}}{\mathrm{g}}=(0.8)^{2}=0.64$
or $\quad \frac{\rho_{\mathrm{w}}}{\rho_{\mathrm{m}}}=0.36$
In liquid, $\quad \frac{\mathrm{g}^{\prime}}{\mathrm{g}}=(0.6)^{2}=0.36$
or

$$
\frac{\rho_{\mathrm{L}}}{\rho_{\mathrm{m}}}=0.64
$$

From equations (i) and (ii) $\frac{\rho_{\mathrm{L}}}{\rho_{\mathrm{w}}}=\frac{0.64}{0.36}$
$\mathrm{S}_{\mathrm{L}}=\rho_{\mathrm{L}} / \rho_{\mathrm{w}}=1.77$
Q. 15 Doppler's effect depends upon velocity of approach and separation of source and observer. hence no change in frequency received by the observer.
\therefore no beat is heard.
Q. $16 \quad \mathrm{f}=\frac{(2 \mathrm{n}+1) \mathrm{v}}{4(l+\mathrm{e})} ;\left(l_{1}+\mathrm{e}\right)=\frac{\mathrm{v}}{4 \mathrm{f}} ; \quad\left(l_{2}+\mathrm{e}\right)=\frac{3 \mathrm{v}}{4 \mathrm{f}}$
$\Rightarrow \frac{l_{2}+\mathrm{e}}{l_{1}+\mathrm{e}}=3$
$l_{2}=(3.6-2.34) \mathrm{m}$ and $l_{1}=(3.6-3.22)$
$\Rightarrow \mathrm{e}=0.06 \mathrm{~m}=0.6 \mathrm{r} \Rightarrow \mathrm{r}=0.1 \mathrm{~m}$
$\mathrm{A}=100 \pi \mathrm{~cm}^{2}$
Q. $17 \Delta \mathrm{Pm}=2 \mathrm{P}_{0} \cos \mathrm{kx}$
(assuming closed end as origin)
At point $\mathrm{Q}, \mathrm{x}=\mathrm{L}-\frac{7 \mathrm{~L}}{9}=\frac{2 \mathrm{~L}}{9}$
$\Delta \mathrm{Pm}=2 \Delta \mathrm{P}_{0} \cos \left(\frac{2 \pi}{\lambda} \times \frac{2 \mathrm{~L}}{9}\right)=\Delta \mathrm{P}_{0}$
$\therefore \quad$ Required ratio $=1: 2$
Q. $18 \mathrm{~T}=2 \pi \sqrt{\frac{1}{\mathrm{~g}-\mathrm{a}}}, a$ is the downward acceleration of box
$\mathrm{T}_{0}=2 \pi \sqrt{\frac{1}{\mathrm{~g}}} \Rightarrow \mathrm{a}=\frac{3 \mathrm{~g}}{4}$
$\mathrm{Mg}-\mathrm{R}=\mathrm{Ma} \Rightarrow \mathrm{R}=\frac{\mathrm{Mg}}{4}, \mathrm{v}=\frac{\mathrm{Mg}}{4 \mathrm{k}}$
Q. 19 Let elongation of spring be x_{0} in equilibrium.

Then,

$$
\begin{equation*}
2 \mathrm{~T}+\mathrm{mg} \sin \theta=2 \mathrm{kx}_{0} \tag{i}
\end{equation*}
$$

and $\quad \mathrm{T}=\mathrm{mg}$
Let Block B is displaced by x down the inclination
F.B.D. of B

$$
\begin{align*}
& \underbrace{2 T^{\prime}}_{m g} \operatorname{ain}_{2}^{2 k\left(x_{0}+2 x\right)} \\
& -\mathrm{ma}_{\mathrm{B}}=2 \mathrm{k}\left(\mathrm{x}_{0}+2 \mathrm{x}\right)-2 \mathrm{~T}^{\prime}-\mathrm{mg} \sin \theta \tag{iii}\\
& \text { F.B.D. of A } \\
& \mathrm{mg}-\mathrm{T}=\mathrm{ma}_{\mathrm{A}} \\
& \text { Also, } \quad \mathrm{a}_{\mathrm{A}}=2 \mathrm{a}_{\mathrm{B}} \\
& \mathrm{~T}^{\prime}=\mathrm{mg}-2 \mathrm{ma}_{\mathrm{B}} \\
& -\mathrm{ma}_{\mathrm{B}}=2 \mathrm{kx}_{0}+4 \mathrm{kx}-2 \mathrm{mg}+4 \mathrm{ma}_{\mathrm{B}}-\mathrm{mg} \sin \theta \\
& -\mathrm{ma}_{\mathrm{B}}=4 \mathrm{kx}+4 \mathrm{ma}_{\mathrm{B}} \\
& \mathrm{a}_{\mathrm{B}}=-\frac{4 \mathrm{k}}{5 \mathrm{~m}} \mathrm{x} \\
& \therefore \quad \mathrm{~T}=2 \pi \sqrt{\frac{5 \mathrm{~m}}{4 \mathrm{k}}} \\
& \mathrm{~T}=6.28 \mathrm{~s} \text {. }
\end{align*}
$$

Q. 20 Current in the circuit is given by

$$
i=\frac{\varepsilon}{3+x}
$$

Power generated in 1Ω

$$
=\left(\frac{\varepsilon}{3+x}\right)^{2} \times 1=\frac{\varepsilon^{2}}{3+x}
$$

Power will be max when $3+x$ is minimum i.e., \quad for $x=0$
Q. 21 As the block moves out of the liquid, tension increases.
Q. $22 \mathrm{~T}=\frac{2 \pi \mathrm{R}}{\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}}}, \mathrm{T} \propto \mathrm{R}^{3 / 2}$

Radius of $2^{\text {nd }}$ satellite is 1% greater
Hence time period is $1 \times \frac{3}{2}=1.5 \%$ larger
Q. 23 From perpendicular axis theorem $I_{z}=I_{x}+I_{y}=2 I$
Q. $24 \quad\left(\mathrm{~A}_{\mathrm{CM}}\right)_{\mathrm{x}}=\frac{\mathrm{mA}+\mathrm{MA}}{\mathrm{m}+\mathrm{M}}=\mathrm{A}$

$$
\begin{aligned}
& \left(\mathrm{A}_{\mathrm{CM}}\right)_{\mathrm{y}}=\frac{\mathrm{M} \times 0+\mathrm{mR} \alpha}{\mathrm{~m}+\mathrm{M}}=\frac{\mathrm{mR} \alpha}{\mathrm{~m}+\mathrm{M}} \\
& \mathrm{f}=(\mathrm{M}+\mathrm{m}) \mathrm{A} \\
& (\mathrm{M}+\mathrm{m}) \mathrm{g}-\mathrm{N}=(\mathrm{M}+\mathrm{m})\left(\mathrm{A}_{C M}\right)_{\mathrm{y}} \\
& \mathrm{mgR}=\mathrm{I}_{\mathrm{A}} \alpha \\
& \mathrm{~A}=\mathrm{R} \alpha \\
& \therefore \quad \mathrm{~N}=70 \mathrm{~N}
\end{aligned}
$$

Q. 25 In steady state no current flows through capacitor. The potential difference across capacitor and resistor of resistance R_{2} is same.
$\therefore \quad$ charge on capacitor
$=\mathrm{CV}=\mathrm{C} \times \frac{\mathrm{R}_{2}}{\mathrm{r}+\mathrm{R}_{2}} \times 3=1 \mu \mathrm{~F} \times \frac{1}{5+1} \times 3$
$=2 \mu \mathrm{C}$.
Q. $26 \quad[\beta]=\mathrm{L}$
$\mathrm{ML}^{2} \mathrm{~T}^{-2}=\frac{\alpha[\mathrm{L}]^{1 / 2}}{[\mathrm{~L}]}$
$\alpha=[M]\left[L^{5 / 2}\right]\left[T^{-2}\right]$
Q. 27 For safe crossing, the condition is that the man must cross the road by the time the truck covers the distance $4+\mathrm{AC}$ or $4+2 \cot$

$$
\therefore \quad \frac{4+2 \cot \theta}{8}=\frac{2 / \sin \theta}{v}
$$

or $\quad \mathrm{v}=\frac{8}{2 \sin \theta+\cos \theta}$

For minimum $v, \frac{d v}{d \theta}=0 \Rightarrow \tan \theta=2$
From equation (i), $\mathrm{v}_{\text {min }}=\frac{8}{\sqrt{5}}=3.57 \mathrm{~m} / \mathrm{s}$
Q. 28 Acceleration ofblock m with respect to inclined plane $=6$
Acceleration of inclined plane $=\frac{2}{\sqrt{3}}$
Q. 29 Work done by friction $=-\mu \mathrm{mg} l$

Work done by gravity $=-$ mgh
So work done by force $=\mathrm{mgh}+\mu \mathrm{mg} l$
Q. $30 \quad \vec{r}=\left(t^{2}-4 t+6\right) \hat{i}+t^{2} \hat{j} ; \vec{v}=\frac{d \vec{r}}{d t}=(2 t-4) \hat{i}$
$+2 t \hat{j}, \quad \vec{a}=\frac{d \vec{v}}{d t}=2 \hat{i}+2 \hat{j}$
if \vec{a} and \vec{v} are perpendicular

$$
\begin{aligned}
& \vec{a} \cdot \vec{v}=0 \\
& (2 \hat{i}+2 \hat{j}) \cdot((2 t-4) \hat{i}+2 t \hat{j})=0 \\
& 8 t-8=0 \\
& t=1 \text { sec. }
\end{aligned}
$$

Ans. $\mathrm{t}=1 \mathrm{sec}$.

CHEMISTRY

Q. $31 \quad \mathrm{IE}_{1} \longrightarrow 24.6 \mathrm{eV}$
$\mathrm{IE}_{2} \longrightarrow 54.4 \mathrm{eV}$
$\mathrm{He} \xrightarrow[\left(\mathrm{IE}_{1}+\mathrm{IE}_{2}\right)]{ } \mathrm{He}^{2+}$
$=24.6+54.4 \mathrm{eV}$
$=79.0 \mathrm{eV}$
In $\mathrm{kJ} \rightarrow 79.0 \times 1.6 \times 10^{-22} \times 6 \times 10^{23}$
$=7584 \mathrm{~kJ}$
Q. 33 Reaction is endothermic $\Rightarrow \Delta \mathrm{H}=$ positive So on increasing temperature reaction will shift forward. On decreasing volume concentration of every species will increases.
Q. 34

Q. 35 due to H -bonding butan-1-ol has highest boiling point out of the three compounds. Butanal has higher boiling point than butane due to its higher polarity.
Q. $36 \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCN}+\mathrm{OH}^{-}$
$0.1-0.1 \mathrm{~h}$
0.1 h
$\left[\mathrm{OH}^{-}\right]=0.1 \times 0.04=4 \times 10^{-3} \mathrm{M}$
$\mathrm{K}_{\text {sp }}=\left[\mathrm{Al}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}$
$6.4 \times 10^{-20}=\mathrm{S} \times\left[4 \times 10^{-3}\right]^{3}$
$\mathrm{S}=10^{-12} \mathrm{~mol} \mathrm{~L}^{-1}$
Q. $372 \mathrm{MH}+\mathrm{B}_{2} \mathrm{H}_{6} \longrightarrow \quad 2 \mathrm{M}^{+}$
$\left[\mathrm{BH}_{4}\right]^{-} \quad\{\mathrm{M}=\mathrm{Li}$ or Na$\}$

Q. 38 (1) $\mathrm{PhNH}_{2}+\mathrm{CHCl}_{3}+\mathrm{KOH} \rightarrow \mathrm{PhNC}+$ $3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}$
unpleasant smell (isocyanide test)
$\mathrm{PhNHMe}+\mathrm{CHCl}_{3}+\mathrm{KOH}-$ ve isocyanide test as it not 1° amine.
(2) $\mathrm{PhNH}_{2}+\mathrm{NaNO}_{2}+\mathrm{HCl} \rightarrow \mathrm{PhN}_{2}^{+} \mathrm{Cl}^{-}$ (Diazonium reaction)
$\mathrm{PhNHMe}+\mathrm{NaNO}_{2}+\mathrm{HCl} \rightarrow$

Q. 39 The formation of micelle only above certain temperature called Kraft temperature suggests positive $\Delta \mathrm{S}$ of micelle formation which even overcome effect of positive $\Delta \mathrm{H}$ of micelle
formation. Besides kinetic effect also become important at high temperature.
Q. $40 \quad \mathrm{Ma}_{4} \mathrm{bc}$

G.I. $=2$, O.I. $=0$, S.I. $=2$

All S.I.are optically inactive
Q. 41 Teflon is a addition polymer
Q. $42 \mathrm{Pt} \mid \mathrm{H}_{2}(\mathrm{P}$ atm $)\left|\mathrm{H}^{+}\left(\mathrm{M}_{1}\right)\right|\left|\mathrm{H}^{+}\left(\mathrm{M}_{2}\right)\right| \mathrm{H}_{2}\left(\mathrm{P}_{2}\right.$ atm) \mid Pt
at anode $\mathrm{H}_{2} \xrightarrow[\mathrm{P}]{ } 2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
at cathode $2 \mathrm{H}^{+} \xrightarrow[\left(\mathrm{M}_{2}\right)]{\mathrm{P}_{1}} \mathrm{H}_{2}$
P_{2}
net $2 \mathrm{H}^{+}+\mathrm{H}_{2}\left(\mathrm{P}_{1}\right) \longrightarrow 2 \mathrm{H}^{+}+\mathrm{H}_{2}\left(\mathrm{P}_{2}\right)$
cell $\quad\left(\mathrm{M}_{2}\right) \quad\left(\mathrm{M}_{1}\right) \quad$ reaction
$\mathrm{E}_{\text {Cell }}=\mathrm{E}_{\text {Cell }}^{0}-\frac{0.06}{2} \log \frac{\left[\mathrm{H}^{+}\right]^{2}\left(\mathrm{P}_{2}\right)}{\left(\mathrm{H}^{+}\right)^{2}\left(\mathrm{P}_{1}\right)}$
$\because \quad \mathrm{P}_{1}=\mathrm{P}_{2}$
$\mathrm{E}_{\text {Cell }}^{\circ}=0$
$\mathrm{E}_{\text {Cell }}=-\frac{0.06}{2} \log \frac{\left[\mathrm{H}^{+}\right]_{\mathrm{M}_{1}}^{2}}{\left[\mathrm{H}^{+}\right]_{\mathrm{M}_{2}}^{2}}$
$=-\frac{0.06}{2} \log (1.5)^{2}$
$=-0.0108 \mathrm{~V} \quad$ Ans.
$\mathrm{Q} .43 \mathrm{Ni}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g}) \longrightarrow \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g})$ $\mathrm{d}^{10}, \mathrm{sp}^{3}$, tetrahedral complex
Q. 44

Q. 46 Carbonates of alkali metals
(a) Covalent character $\rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}>\mathrm{Na}_{2} \mathrm{CO}_{3}$
$>\mathrm{K}_{2} \mathrm{CO}_{3}>\mathrm{Rb}_{2} \mathrm{CO}_{3}>\mathrm{Cs}_{2} \mathrm{CO}_{3}$
(b) Solubility $\rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}<\mathrm{Na}_{2} \mathrm{CO}_{3}<\mathrm{K}_{2} \mathrm{CO}_{3}$
$<\mathrm{Rb}_{2} \mathrm{CO}_{3}<\mathrm{Cs}_{2} \mathrm{CO}_{3}$
(c) Thermal stability $\rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}<\mathrm{Na}_{2} \mathrm{CO}_{3}<$
$\mathrm{K}_{2} \mathrm{CO}_{3}<\mathrm{Rb}_{2} \mathrm{CO}_{3}<\mathrm{Cs}_{2} \mathrm{CO}_{3}$
Q. 47

is most stable conjugate base.
Q. $48 \quad \mathrm{~A}(\mathrm{~g}) \rightleftharpoons \mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g})$
$\alpha=0.2 \quad \mathrm{VD}=60$
$\Rightarrow \mathrm{M}_{\mathrm{obs}}=120 \quad \mathrm{n}=3-1=2$
$\alpha=\frac{\mathrm{M}_{\mathrm{Th}}-\mathrm{M}_{\mathrm{Obs}}}{\mathrm{M}_{\mathrm{Obs}}(\mathrm{n}-1)}$
$0.2=\frac{\mathrm{M}_{\mathrm{Th}}-120}{120(3-1)}$
$\mathrm{M}_{\mathrm{Th}}=(0.2 \times 240)+120$
$=48+120$
$=168$ Ans.
Q. $49 \quad \mathrm{~d}^{5} \rightarrow \mathrm{WFL}\left(\Delta_{0}<\mathrm{PE}\right)$
eg

Q. $51 \frac{\mathrm{mv}^{2}}{\mathrm{r}}=\frac{\mathrm{KZe}^{2}}{\mathrm{r}^{2}}$

For $\mathrm{H}: \mathrm{Z}=1$

$$
\begin{aligned}
& \frac{\mathrm{mv}^{2}}{\mathrm{r}}=\frac{\mathrm{Ke}^{2}}{\mathrm{r}^{2}}\left(\mathrm{~K}=\frac{1}{4 \pi \varepsilon_{0}}\right) \\
& \frac{\mathrm{mv}^{2}}{\mathrm{r}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{e}^{2}}{\mathrm{r}^{2}} \\
& \mathrm{v}^{2}=\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0} \mathrm{rm}}
\end{aligned}
$$

$v=\frac{\mathrm{e}}{\sqrt{4 \pi \varepsilon_{0} \mathrm{rm}}}$
Q. $52 \underset{\text { (Yellow) }}{2 \mathrm{CrO}_{4}^{2-}} \stackrel{\mathrm{H}^{+}}{\stackrel{\mathrm{OH}^{-}}{\rightleftharpoons}} \underset{\left(\mathrm{d}^{3} \mathrm{~s},\right.}{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}}+\mathrm{H}_{2} \mathrm{O}$ tetrahedral)
Q. 53

Chiral center present
Q. $54 \quad \frac{\mathrm{~d}_{\mathrm{bcc}}}{\mathrm{d}_{\mathrm{fcc}}}=\frac{\left(2 \mathrm{M} \times 3 \sqrt{3} /\left(\mathrm{N}_{\mathrm{A}} \times 64 \mathrm{r}^{3}\right)\right)}{\left(4 \mathrm{M} \times 2 \sqrt{2} /\left(\mathrm{N}_{\mathrm{A}} \times 64 \mathrm{r}^{3}\right)\right)}=0.918$
Q. 55 Stability of halogen oxide :
$\mathrm{I}_{2} \mathrm{O}>\mathrm{Cl}_{2} \mathrm{O}>\mathrm{Br}_{2} \mathrm{O}$
Q. 57 Theory based
Q. $58 \quad$ (1) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ (White) $\xrightarrow[\mathrm{NH}_{4} \mathrm{OH}]{\text { Excess }} \mathrm{Pb}(\mathrm{OH})_{2} \downarrow$
(White)
(2) $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$ (White) $\xrightarrow[\mathrm{NH}_{4} \mathrm{OH}]{\text { Excess }} \mathrm{Fe}(\mathrm{OH})_{2} \downarrow$
(Green)
(3) AgNO_{3} (White) $\xrightarrow[\mathrm{NH}_{4} \mathrm{OH}]{\text { Excess }}\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$ (soluble complex)
(4)
$\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$
$\xrightarrow[\mathrm{NH}_{4} \mathrm{OH}]{\text { Excess }} \mathrm{HgO} . \mathrm{HgNH}_{2} \mathrm{NO}_{3} \downarrow$
(White)
Q. 59

Q. 60 Reaction is exothermic $\therefore \Delta \mathrm{H}=-$ ve
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
Since process is spontaneous
$\Delta \mathrm{G}=-\mathrm{ve}$
This is possible only if magnitude of $\Delta \mathrm{H}>\mathrm{T} \Delta \mathrm{S}$

MATHEMATICS

Q. $61 \quad \because \operatorname{gof}(x)=g\left(x^{3}+3\right)=2 x^{3}+7$ $\operatorname{gof}(2)=2 \cdot 8+7=23$
$\therefore \operatorname{gof}(2)=23 \Rightarrow \mathrm{f}^{-1} \mathrm{og}^{-1}(23)=2$
Q. 62 Required probability $=1-$ all students are evaluating their own answer sheet

$$
=1-\frac{1}{120}=\frac{119}{120}
$$

Q. 63 number of elements in $\mathrm{A} \times \mathrm{B}=6$
\therefore number of required subsets $=$
${ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}+{ }^{4} \mathrm{C}_{4}$
$=15+20+15=50$
Q. $64 \quad \because$ ellipse is $\frac{\mathrm{x}^{2}}{4}+\frac{\mathrm{y}^{2}}{3}=1$

Its eccentricity $\mathrm{e}=\sqrt{1-\frac{3}{4}}=\frac{1}{2}=0.5$
\because eccentricity of auxiliary circle $=0$
\therefore ellipse will coincide with auxiliary circle in 5 seconds.
Q. 65 Area $=\int_{0}^{1}\left(e^{x}-e^{-x}\right) d x$
Q. $69 \because$ for non trivial solution
$\mathrm{D}=0 \Rightarrow\left|\begin{array}{ccc}2 & \mathrm{k} & 0 \\ 0 & -2 & \mathrm{k} \\ \mathrm{k} & 0 & 2\end{array}\right|=0$
$\Rightarrow 2(-4-0)-\mathrm{k}\left(0-\mathrm{k}^{2}\right)=0$
$\Rightarrow \mathrm{k}^{3}=8 \Rightarrow \mathrm{k}=2$
Q. $70 \quad \mathrm{z}$-axis is $\overrightarrow{\mathrm{r}}=\overrightarrow{0}+\lambda(\hat{\mathrm{k}})$
line is $\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-\hat{\mathrm{k}})+\mu(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})$
\therefore shortest distance
$=\left|\frac{(2 \hat{i}+5 \hat{\mathrm{j}}-\hat{\mathrm{k}}) \cdot((3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}) \times \hat{\mathrm{k}})}{|(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}) \times \hat{\mathrm{k}}|}\right|=\frac{11}{\sqrt{13}}$
Q. 71

p	q	$\sim \mathrm{p}$	$\sim \mathrm{p} \wedge \mathrm{q}$	$\mathrm{q} \rightarrow \mathrm{p}$	$\sim(\mathrm{q} \rightarrow \mathrm{p})$
T	T	F	F	T	F
T	F	F	F	T	F
F	T	T	T	F	T
F	F	T	F	T	F

$\therefore \sim \mathrm{p} \wedge \mathrm{q}=\sim(\mathrm{q} \rightarrow \mathrm{p})$
Q. 72 Given limit=

$$
\operatorname{Lim}_{x \rightarrow \infty} \frac{(x+1)^{2010}+(x+2)^{2010}+\ldots \ldots \ldots+(x+10)^{2010}}{\left(x^{1006}+1\right)\left(2 x^{1004}+1\right)}=\frac{10}{2}=5
$$

Q. $73 \quad \because y^{\prime}(x)=f^{\prime}\left(e^{x}\right) e^{f(x)}+f\left(e^{x}\right) \cdot e^{f(x)} \cdot f^{\prime}(x)$
$\therefore y^{\prime}(0)=f^{\prime}(1) e^{f(0)}+f(1) \cdot e^{f(0)} \cdot f^{\prime}(0)$
$=2 \cdot 1+0=2$
Q. 74 Clearly $\mathrm{x}^{2}-7 \mathrm{x}+\mathrm{a}$ should have $\mathrm{x}-4$ as a factor
$\therefore 16-28+\mathrm{a}=0 \Rightarrow \mathrm{a}=12$ and $\mathrm{x}^{2}+5 \mathrm{x}+\mathrm{b}$ should have $\mathrm{x}+1$ as a factor
$\therefore+1-5+\mathrm{b}=0 \Rightarrow \mathrm{~b}=4$
Q. 75

$$
\because \mathrm{C} \cdot \mathrm{~V} \cdot=\frac{\sigma}{\overline{\mathrm{x}}} \times 100 \Rightarrow \sigma=\frac{\mathrm{C} \cdot \mathrm{~V} \cdot \times \overline{\mathrm{x}}}{100}
$$

$\therefore \sigma_{1}=\frac{50 \times 30}{100}=15$
and $\sigma_{2}=\frac{60 \times 25}{100}=15$
Q. 76
given sum $=\mathrm{i}+\mathrm{i}+\mathrm{i}^{2}+\mathrm{i}^{6}+\mathrm{i}^{4!}+$ \qquad $+i^{100!}$

$$
\mathrm{i}+\mathrm{i}-1-1+\frac{1+1+\ldots \ldots \ldots 1}{97 \text { times }}
$$

Q. $77|\mathrm{~A}|^{2^{4}}=(2.5)^{16} \Rightarrow|\mathrm{~A}|= \pm 10$
$\because|A|=x+y+z$, where $x, y, z \in N$
$\therefore \mathrm{x}+\mathrm{y}+\mathrm{z}=10$
\therefore number of solutions $={ }^{10-1} \mathrm{C}_{3-1}$
$={ }^{9} \mathrm{C}_{2}=\frac{9 \times 8}{2}=36$
Q. $78 \quad \because|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|=2 \sqrt{2} \Rightarrow|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|^{2}=8$
$\Rightarrow|\overrightarrow{\mathrm{c}}|^{2}+9-2 \overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}=8 \Rightarrow|\overrightarrow{\mathrm{c}}|^{2}-2|\overrightarrow{\mathrm{c}}|+1$
$=0 \Rightarrow|\overrightarrow{\mathrm{c}}|=1$
$\Rightarrow \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -2 \\ 1 & 1 & 0\end{array}\right|=2 \hat{i}-2 \hat{j}+\hat{k}$
$\therefore 10|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}}|=10|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{c}}| \sin 30^{\circ}$
$=10 \times 3 \times 1 \times \frac{1}{2}=15$
Q. 79 Differentiating, $\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{(\mathrm{f}(\mathrm{x}))^{2}}$
$\Rightarrow \int(\mathrm{f}(\mathrm{x}))^{2} \mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx}=\int 1 \mathrm{dx}$
$\Rightarrow \frac{(\mathrm{f}(\mathrm{x}))^{3}}{3}=\mathrm{x}+\mathrm{C}$
putting $\mathrm{x}=2$,
$\frac{6}{3}=2+C \Rightarrow C=0$
$\therefore \mathrm{f}(\mathrm{x})=(3 \mathrm{x})^{\frac{1}{3}}$
$\therefore f(9)=3$
Q. $80 \quad \because$ Using LMVT for $\mathrm{f}(\mathrm{x})$ in $[1,6]$
$f^{\prime}(\mathrm{c})=\frac{\mathrm{f}(6)-\mathrm{f}(1)}{6-1} \geq 2$
$\Rightarrow \mathrm{f}(6)+2 \geq 10 \Rightarrow \mathrm{f}(6) \geq 8$
Q. 81 number of ways =

Total selections - (number of ways when exactly two consecutive) -(number of ways when all three consecutive
$={ }^{10} \mathrm{C}_{3}-10 \cdot{ }^{6} \mathrm{C}_{1}-10$
$=120-60-10=50$
Q. 82 Let equation of line be $\frac{x}{a}+\frac{y}{b}=1$
\because Perpendicular distance from $(0,0)=4$

$\Rightarrow \frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}=4 \Rightarrow \frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}=\frac{1}{16}$
$\because \mathrm{AM} \geq \mathrm{HM} \Rightarrow \frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{2} \geq \frac{2}{\frac{1}{\mathrm{a}^{2}+\frac{1}{\mathrm{~b}^{2}}}}$
$\Rightarrow a^{2}+b^{2} \geq 64$
\therefore minimum value of $\mathrm{OA}^{2}+\mathrm{OB}^{2}$ is equal to 64 .
Q. $83 \int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x) d x+\underbrace{\int_{a}^{2 a} f(x) d x}_{\begin{array}{l}\text { Let } x=2 a-t \\ d x=-d t\end{array}}$

$$
\begin{aligned}
& =\int_{0}^{a} f(x) d x-\int_{a}^{0} f(2 a-t) d t \\
& =\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x) d x=2+4=6
\end{aligned}
$$

Q. 84 Clearly, $\mathrm{AD}=\mathrm{CD}=\operatorname{hcot} 30^{\circ}=\mathrm{h} \sqrt{3}$
$\therefore \mathrm{BD}=\mathrm{AD} \sqrt{2}=\mathrm{h} \sqrt{6}$

$\therefore \tan \theta=\frac{1}{\sqrt{6}}$
Q. $88 \quad \because \frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\mathrm{a} \Rightarrow 2 \mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right)=\mathrm{a}^{2}$
$\Rightarrow 2 \mathrm{e}^{2}=3 \Rightarrow \mathrm{e}=\sqrt{\frac{3}{2}}$
Q. 89 Let $\mathrm{w}=5(\mathrm{z}-\mathrm{i})-6$
$\Rightarrow \mathrm{w}+1=5(\mathrm{z}-\mathrm{i}-1)$
$\Rightarrow|\mathrm{w}+1|=5|\mathrm{z}-\mathrm{i}-1|=5$
\therefore locus of w is a circle with centre $(-1,0)$ of radius 5 .
Q. 90 After reflection both passes through locus
$\therefore \mathrm{AB}$ is a focal chord
Let A be ($\mathrm{t}^{2}, 2 \mathrm{t}$)
$\therefore 2 \mathrm{t}=4 \Rightarrow \mathrm{t}=2$
$\therefore B=\left(\frac{1}{\mathrm{t}^{2}}, \frac{-2}{\mathrm{t}}\right)$

\therefore Distance of QB from axis $=\left|\frac{-2}{\mathrm{t}}\right|=1$

