FINAL JEE(Advanced) EXAMINATION - 2020

(Held On Sunday 27 ${ }^{\text {th }}$ SEPTEMBER, 2020)

PAPER-1

IEST PAPER WIIH SOLUIION

PART-3 : MATHEMATICS

SECTION-1 : (Maximum Marks : 18)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.

1. Suppose a, b denote the distinct real roots of the quadratic polynomial $x^{2}+20 x-2020$ and suppose c, d denote the distinct complex roots of the quadratic polynomial $x^{2}-20 x+2020$. Then the value of

$$
\mathrm{ac}(\mathrm{a}-\mathrm{c})+\mathrm{ad}(\mathrm{a}-\mathrm{d})+\mathrm{bc}(\mathrm{~b}-\mathrm{c})+\mathrm{bd}(\mathrm{~b}-\mathrm{d})
$$

is
(A) 0
(B) 8000
(C) 8080
(D) 16000

Ans. (D)
Sol. $x^{2}+20 \mathrm{x}-2020=0$ has two roots $\mathrm{a}, \mathrm{b} \in \mathrm{R}$
$x^{2}-20 x+2020=0$ has two roots $c, d \in$ complex
$\mathrm{ac}(\mathrm{a}-\mathrm{c})+\mathrm{ad}(\mathrm{a}-\mathrm{d})+\mathrm{bc}(\mathrm{b}-\mathrm{c})+\mathrm{bd}(\mathrm{b}-\mathrm{d})$
$=a^{2} c-a c^{2}+a^{2} d-a d^{2}+b^{2} c-b c^{2}+b^{2} d-b d^{2}$
$=a^{2}(c+d)+b^{2}(c+d)-c^{2}(a+b)-d^{2}(a+b)$
$=(c+d)\left(a^{2}+b^{2}\right)-(a+b)\left(c^{2}+d^{2}\right)$
$=(\mathrm{c}+\mathrm{d})\left((\mathrm{a}+\mathrm{b})^{2}-2 \mathrm{ab}\right)-(\mathrm{a}+\mathrm{b})\left((\mathrm{c}+\mathrm{d})^{2}-2 \mathrm{~cd}\right)$
$=20\left[(20)^{2}+4040\right]+20\left[(20)^{2}-4040\right]$
$=20\left[(20)^{2}+4040+(20)^{2}-4040\right]$
$=20 \times 800=16000$
2. If the function $f: \mathrm{R} \rightarrow \mathrm{R}$ is defined by $\mathrm{f}(\mathrm{x})=|\mathrm{x}|(\mathrm{x}-\sin \mathrm{x})$, then which of the following statements is TRUE?
(A) f is one-one, but NOT onto
(B) f is onto, but NOT one-one
(C) f is BOTH one-one and onto
(D) f is NEITHER one-one NOR onto

Ans. (C)
Sol. $\mathrm{f}(\mathrm{x})$ is a non-periodic, continuous and odd function
$f(x)=\left\{\begin{array}{l}-x^{2}+x \sin x, x<0 \\ x^{2}-x \sin x, x \geq 0\end{array}\right.$
$f(-\infty)=\underset{x \rightarrow-\infty}{\operatorname{Lt}}\left(-x^{2}\right)\left(1-\frac{\sin x}{x}\right)=-\infty$
$f(\infty)=\operatorname{Lt}_{x \rightarrow \infty} x^{2}\left(1-\frac{\sin x}{x}\right)=\infty$
\Rightarrow Range of $\mathrm{f}(\mathrm{x})=\mathrm{R}$
$\Rightarrow f(x)$ is an onto function...(1)
$f^{\prime}(x)= \begin{cases}-2 x+\sin x+x \cos x, & x<0 \\ 2 x-\sin x-x \cos x, & x \geq 0\end{cases}$
For $(0, \infty)$
$f^{\prime}(x)=(x-\sin x)+x(1-\cos x)$
always +ve always +ve
or $0 \quad$ or 0
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x}) \geq 0, \forall \mathrm{x} \in(-\infty, \infty)$
equality at $x=0$
$\Rightarrow f(x)$ is one-one function
From (1) \& (2), $\mathrm{f}(\mathrm{x})$ is both one-one \& onto.
3. Let the functions $f: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by
$f(x)=e^{x-1}-e^{-|x-1|}$ and $g(x)=\frac{1}{2}\left(e^{x-1}+e^{1-x}\right)$.
Then the area of the region in the first quadrant bounded by the curves $y=f(x), y=g(x)$ and $x=0$ is
(A) $(2-\sqrt{3})+\frac{1}{2}\left(\mathrm{e}-\mathrm{e}^{-1}\right)$
(B) $(2+\sqrt{3})+\frac{1}{2}\left(\mathrm{e}-\mathrm{e}^{-1}\right)$
(C) $(2-\sqrt{3})+\frac{1}{2}\left(e+\mathrm{e}^{-1}\right)$
(D) $(2+\sqrt{3})+\frac{1}{2}\left(\mathrm{e}+\mathrm{e}^{-1}\right)$

Ans. (A)

Sol. Here
$f(x)=\left\{\begin{array}{cc}0 & x \leq 1 \\ e^{x-1}-e^{1-x} & x \geq 1\end{array}\right.$
$\& g(x)=\frac{1}{2}\left(e^{x-1}+e^{1-x}\right)$

solve $\mathrm{f}(\mathrm{x}) \& \mathrm{~g}(\mathrm{x}) \Rightarrow \mathrm{x}=1+\ln \sqrt{3}$
So bounded area $=\int_{0}^{1} \frac{1}{2}\left(\mathrm{e}^{\mathrm{x}-1}+\mathrm{e}^{1-\mathrm{x}}\right) \mathrm{dx}+\int_{1}^{1+\ln \sqrt{3}} \frac{1}{2}\left(\mathrm{e}^{\mathrm{x}-1}+\mathrm{e}^{1-\mathrm{x}}\right)-\left(\mathrm{e}^{\mathrm{x}-1}+\mathrm{e}^{1-\mathrm{x}}\right) \mathrm{dx}$
$=\frac{1}{2}\left[\mathrm{e}^{\mathrm{x}-1}-\mathrm{e}^{1-\mathrm{x}}\right]_{0}^{1}+\left[-\frac{1}{2} \mathrm{e}^{\mathrm{x}-1}-\frac{3}{2} \mathrm{e}^{1-\mathrm{x}}\right]_{1}^{1+\ln \sqrt{3}}$
$=\frac{1}{2}\left[\mathrm{e}-\frac{1}{\mathrm{e}}\right]+\left[\left(-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}\right)+2\right]=2-\sqrt{3}+\frac{1}{2}\left(\mathrm{e}-\frac{1}{\mathrm{e}}\right)$
Ans. (A)
4. Let a, b and λ be positive real numbers. Suppose P is an end point of the latus rectum of the parabola $y^{2}=4 \lambda x$, and suppose the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the point P. If the tangents to the parabola and the ellipse at the point P are perpendicular to each other, then the eccentricity of the ellipse is
(A) $\frac{1}{\sqrt{2}}$
(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $\frac{2}{5}$

Ans. (A)
Sol. $y^{2}=4 \lambda x, P(\lambda, 2 \lambda)$
Slope of the tangent to the parabola at point P
$\frac{d y}{d x}=\frac{4 \lambda}{2 y}=\frac{4 \lambda}{2 x 2 \lambda}=1$
Slope of the tangent to the ellipse at P
$\frac{2 \mathrm{x}}{\mathrm{a}^{2}}+\frac{2 \mathrm{yy}^{\prime}}{\mathrm{b}^{2}}=0$

As tangents are perpendicular $y^{\prime}=-1$
$\Rightarrow \frac{2 \lambda}{\mathrm{a}^{2}}-\frac{4 \lambda}{\mathrm{~b}^{2}}=0 \Rightarrow \frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}=\frac{1}{2}$
$\Rightarrow \mathrm{e}=\sqrt{1-\frac{1}{2}}=\frac{1}{\sqrt{2}}$
Ans. A
5. Let C_{1} and C_{2} be two biased coins such that the probabilities of getting head in a single toss are $\frac{2}{3}$ and $\frac{1}{3}$, respectively. Suppose α is the number of heads that appear when C_{1} is tossed twice, independently, and suppose β is the number of heads that appear when C_{2} is tossed twice, independently, Then probability that the roots of the quadratic polynomial $x^{2}-\alpha x+\beta$ are real and equal, is
(A) $\frac{40}{81}$
(B) $\frac{20}{81}$
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$

Ans. (B)
Sol. $\mathrm{P}(\mathrm{H})=\frac{2}{3}$ for C_{1}
$\mathrm{P}(\mathrm{H})=\frac{1}{3}$ for C_{2}
for C_{1}

No. of Heads (α)	0	1	2
Probability	$\frac{1}{9}$	$\frac{4}{9}$	$\frac{4}{9}$

for C_{2}

No. of Heads (β)	0	1	2
Probability	$\frac{4}{9}$	$\frac{4}{9}$	$\frac{1}{9}$

for real and equal roots

$$
\alpha^{2}=4 \beta
$$

$(\alpha, \beta)=(0,0),(2,1)$
So, probability $=\frac{1}{9} \times \frac{4}{9}+\frac{4}{9} \times \frac{4}{9}=\frac{20}{81}$
6. Consider all rectangles lying in the region

$$
\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{R} \times \mathbb{R}: 0 \leq \mathrm{x} \leq \frac{\pi}{2} \text { and } 0 \leq \mathrm{y} \leq 2 \sin (2 \mathrm{x})\right\}
$$

and having one side on the x -axis. The area of the rectangle which has the maximum perimeter among all such rectangles, is
(A) $\frac{3 \pi}{2}$
(B) π
(C) $\frac{\pi}{2 \sqrt{3}}$
(D) $\frac{\pi \sqrt{3}}{2}$

Ans. (C)

Sol.

Perimeter $=2(2 \alpha+2 \cos 2 \alpha)$
$\mathrm{P}=4(\alpha+\cos 2 \alpha)$
$\frac{\mathrm{dP}}{\mathrm{d} \alpha}=4(1-2 \sin 2 \alpha)=0$
$\sin 2 \alpha=\frac{1}{2}$

$$
2 \alpha=\frac{\pi}{6}, \frac{5 \pi}{6}
$$

$$
\frac{\mathrm{d}^{2} \mathrm{P}}{\mathrm{~d} \alpha^{2}}=-4 \cos 2 \alpha
$$

for maximum $\alpha=\frac{\pi}{12}$

$$
\begin{aligned}
\text { Area } & =(2 \alpha)(2 \cos 2 \alpha) \\
& =\frac{\pi}{6} \times 2 \times \frac{\sqrt{3}}{2}=\frac{\pi}{2 \sqrt{3}}
\end{aligned}
$$

SECTION-2 : (Maximum Marks : 24)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks $\quad:+4$ If only (all) the correct option(s) is(are) chosen;
Partial Marks $\quad:+3$ If all the four options are correct but ONLY three options are chosen;
Partial Marks $:+2$ If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks $\quad:+1$ If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If none of the options is chose (i.e. the question is unanswered);
Negative Marks : -2 In all other cases
7. Let the function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}^{2}+(\mathrm{x}-1) \sin \mathrm{x}$ and let $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be an arbitrary function. Let $f g: R \rightarrow R$ be the product function defined by (f) $(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$. Then which of the following statements is/are TRUE ?
(A) If g is continuous at $\mathrm{x}=1$, then fg is differentiable at $\mathrm{x}=1$
(B) If fg is differentiable at $\mathrm{x}=1$, then g is continuous at $\mathrm{x}=1$
(C) If g is differentiable at $\mathrm{x}=1$, then fg is differentiable at $\mathrm{x}=1$
(D) If fg is differentiable at $\mathrm{x}=1$, then g is differentiable at $\mathrm{x}=1$

Ans. (A,C)
Sol. $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R} \quad \mathrm{f}(\mathrm{x})=\left(\mathrm{x}^{2}+\sin \mathrm{x}\right)(\mathrm{x}-1) \quad \mathrm{f}\left(1^{+}\right)=\mathrm{f}\left(1^{-}\right)=\mathrm{f}(1)=0$
$\mathrm{fg}(\mathrm{x}): \mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x}) \quad \mathrm{fg}: \mathrm{R} \rightarrow \mathrm{R}$
let $\mathrm{fg}(\mathrm{x})=\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x}) \quad \mathrm{h}: \mathrm{R} \rightarrow \mathrm{R}$
option (c) $h^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$

$$
\begin{aligned}
& h^{\prime}(1)=f^{\prime}(1) g(1)+0, \\
& \left(\text { as } f(1)=0, g^{\prime}(x) \text { exists }\right\}
\end{aligned}
$$

\Rightarrow if $\mathrm{g}(\mathrm{x})$ is differentiable then $\mathrm{h}(\mathrm{x})$ is also differentiable (true)
option (A) If $g(x)$ is continuous at $x=1$ then $g\left(1^{+}\right)=g\left(1^{-}\right)=g(1)$
$h^{\prime}\left(1^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{h(1+h)-h(1)}{h}$

$$
\begin{aligned}
& h^{\prime}\left(1^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{f(1+h) g(1+h)-0}{h}=f^{\prime}(1) g(1) \\
& h^{\prime}\left(1^{-}\right)=\lim _{h \rightarrow 0^{+}} \frac{f(1-h) g(1-h)-0}{-h}=f^{\prime}(1) g(1)
\end{aligned}
$$

So $\quad h(x)=f(x) \cdot g(x)$ is differentiable

$$
\text { at } \mathrm{x}=1 \quad \text { (True) }
$$

option (B) (D) $h^{\prime}\left(1^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{h(1+h)-h(1)}{-h}$

$$
\begin{aligned}
& \mathrm{h}^{\prime}\left(1^{+}\right)=\lim _{\mathrm{h} \rightarrow 0^{+}} \frac{f(1+\mathrm{h}) \mathrm{g}(1+\mathrm{h})}{\mathrm{h}}=\mathrm{f}^{\prime}(1) \mathrm{g}\left(1^{+}\right) \\
& \mathrm{h}^{\prime}\left(1^{-}\right)=\lim _{\mathrm{h} \rightarrow 0^{+}} \frac{f(1-\mathrm{h}) \mathrm{g}(1-\mathrm{h})}{-\mathrm{h}}=\mathrm{f}^{\prime}(1) \cdot \mathrm{g}\left(1^{-}\right) \\
& \Rightarrow \mathrm{g}\left(1^{+}\right)=\mathrm{g}\left(1^{-}\right)
\end{aligned}
$$

So we cannot comment on the continuity and differentiability of the function.
8. Let M be a 3×3 invertible matrix with real entries and let I denote the 3×3 identity matrix. If $\mathrm{M}^{-1}=\operatorname{adj}(\operatorname{adj} \mathrm{M})$, then which of the following statement is/are ALWAYS TRUE ?
(A) $\mathrm{M}=\mathrm{I}$
(B) $\operatorname{det} \mathrm{M}=1$
(C) $\mathrm{M}^{2}=\mathrm{I}$
(D) $(\operatorname{adj} M)^{2}=I$

Ans. (B,C,D)
Sol. $\operatorname{det}(\mathrm{M}) \neq 0$
$\mathrm{M}^{-1}=\operatorname{adj}(\operatorname{adj} \mathrm{M})$
$\mathrm{M}^{-1}=\operatorname{det}(\mathrm{M}) \cdot \mathrm{M}$
$M^{-1} M=\operatorname{det}(M) \cdot M^{2}$
$\mathrm{I}=\operatorname{det}(\mathrm{M}) \cdot \mathrm{M}^{2}$
$\operatorname{det}(\mathrm{I})=(\operatorname{det}(\mathrm{M}))^{5}$
$1=\operatorname{det}(\mathrm{M})$
From (i) $\quad I=M^{2}$
$(\operatorname{adj} \mathrm{M})^{2}=\operatorname{adj}\left(\mathrm{M}^{2}\right)=\operatorname{adj} \mathrm{I}=\mathrm{I}$
9. Let S be the set of all complex numbers z satisfying $\left|z^{2}+z+1\right|=1$. Then which of the following statements is/are TRUE?
(A) $\left|z+\frac{1}{2}\right| \leq \frac{1}{2}$ for all $z \in S$
(B) $|\mathrm{z}| \leq 2$ for all $\mathrm{z} \in \mathrm{S}$
(C) $\left|z+\frac{1}{2}\right| \geq \frac{1}{2}$ for all $z \in S$
(D) The set S has exactly four elements

Ans. (B,C)

Sol. $\left|z^{2}+z+1\right|=1$
$\Rightarrow\left|\left(z+\frac{1}{2}\right)^{2}+\frac{3}{4}\right|=1$
$\Rightarrow \quad\left|\left(\mathrm{z}+\frac{1}{2}\right)^{2}+\frac{3}{4}\right| \leq\left|\mathrm{z}+\frac{1}{2}\right|^{2}+\frac{3}{4}$
$\Rightarrow \quad 1 \leq\left|z+\frac{1}{2}\right|^{2}+\frac{3}{4} \Rightarrow\left|\left(z+\frac{1}{2}\right)\right|^{2} \geq \frac{1}{4}$
$\Rightarrow\left|z+\frac{1}{2}\right| \geq \frac{1}{2}$
also $\left|\left(z^{2}+z\right)+1\right|=1 \geq\left|\left|z^{2}+z\right|-1\right|$
$\Rightarrow\left|z^{2}+z\right|-1 \leq 1$
$\Rightarrow\left|\mathrm{z}^{2}+\mathrm{z}\right| \leq 2$
$\Rightarrow\left|\left|z^{2}\right|-|z|\right| \leq\left|z^{2}+z\right| \leq 2$
$\Rightarrow\left|\mathrm{r}^{2}-\mathrm{r}\right| \leq 2$
$\Rightarrow \quad \mathrm{r}=|\mathrm{z}| \leq 2 ; \forall \mathrm{z} \in \mathrm{S}$
Also we can always find root of the equation $\mathrm{z}^{2}+\mathrm{z}+1=\mathrm{e}^{\mathrm{i} \mathrm{\theta}} ; \forall \theta \in \mathrm{R}$
Hence set 'S' is infinite
10. Let x, y and z be positive real numbers. Suppose x, y and z are lengths of the sides of a triangle opposite to its angles X, Y and Z , respectively. If

$$
\tan \frac{X}{2}+\tan \frac{Z}{2}=\frac{2 y}{x+y+z},
$$

then which of the following statements is/are TRUE?
(A) $2 \mathrm{Y}=\mathrm{X}+\mathrm{Z}$
(B) $Y=X+Z$
(C) $\tan \frac{X}{2}=\frac{x}{y+z}$
(D) $x^{2}+z^{2}-y^{2}=x z$

Ans. (B,C)

Sol.

$\tan \frac{x}{2}+\tan \frac{z}{2}=\frac{2 y}{x+y+z}$
$\frac{\Delta}{S(S-x)}+\frac{\Delta}{S(S-z)}=\frac{2 y}{2 S}$
$\frac{\Delta}{S}\left(\frac{2 S-(x+z)}{(S-x)(S-z)}\right)=\frac{y}{S}$
$\Rightarrow \quad \frac{\Delta y}{S(S-x)(S-z)}=\frac{y}{S}$
$\Rightarrow \quad \Delta^{2}=(\mathrm{S}-\mathrm{x})^{2}(\mathrm{~S}-\mathrm{z})^{2}$
$\Rightarrow \quad \mathrm{S}(\mathrm{S}-\mathrm{y})=(\mathrm{S}-\mathrm{x})(\mathrm{S}-\mathrm{z})$
$\Rightarrow \quad(x+y+z)(x+z-y)=(y+z-x)(x+y-z)$
$\Rightarrow \quad(x+z)^{2}-y^{2}=y^{2}-(z-x)^{2}$
$\Rightarrow \quad(\mathrm{x}+\mathrm{z})^{2}+(\mathrm{x}-\mathrm{z})^{2}=2 \mathrm{y}^{2}$
$\Rightarrow \quad \mathrm{x}^{2}+\mathrm{z}^{2}=\mathrm{y}^{2} \Rightarrow \angle \mathrm{Y}=\frac{\pi}{2}$
$\Rightarrow \quad \angle \mathrm{Y}=\angle \mathrm{X}+\angle \mathrm{Z}$
$\tan \frac{\mathrm{X}}{2}=\frac{\Delta}{\mathrm{S}(\mathrm{S}-\mathrm{x})}$
$\tan \frac{x}{2}=\frac{\frac{1}{2} x z}{\frac{(y+z)^{2}-x^{2}}{4}}$

$\tan \frac{x}{2}=\frac{2 x z}{y^{2}+z^{2}+2 y z-x^{2}}$
$\tan \frac{x}{2}=\frac{2 x z}{2 z^{2}+2 y z} \quad\left(\right.$ using $\left.^{2} y^{2}=x^{2}+z^{2}\right)$
$\tan \frac{x}{2}=\frac{x}{y+z}$
11. Let L_{1} and L_{2} be the following straight line.
$\mathbf{L}_{1}: \frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}}{-1}=\frac{\mathrm{z}-1}{3}$ and $\mathrm{L}_{2}: \frac{\mathrm{x}-1}{-3}=\frac{\mathrm{y}}{-1}=\frac{\mathrm{z}-1}{1}$
Suppose the straight line
$L: \frac{x-\alpha}{l}=\frac{y-1}{m}=\frac{z-\gamma}{-2}$
lies in the plane containing L_{1} and L_{2}, and passes through the point of intersection of L_{1} and L_{2}. If the line L bisects the acute angle between the lines L_{1} and L_{2}, then which of the following statements is/are TRUE?
(A) $\alpha-\gamma=3$
(B) $l+\mathrm{m}=2$
(C) $\alpha-\gamma=1$
(D) $l+\mathrm{m}=0$

Ans. (A,B)
Sol. Point of intersection of $L_{1} \& L_{2}$ is $(1,0,1)$
Line L passes through ($1,0,1$)
$\frac{1-\alpha}{\ell}=-\frac{1}{m}=\frac{1-\gamma}{-2}$
acute angle bisector of $\mathrm{L}_{1} \& \mathrm{~L}_{2}$
$\overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}+\hat{\mathrm{k}}+\lambda\left(\frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}}-3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{11}}\right)$
$\overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}+\hat{\mathrm{k}}+\mathrm{t}(\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$
$\Rightarrow \quad \frac{\ell}{1}=\frac{\mathrm{m}}{1}=\frac{-2}{-2} \Rightarrow \quad \ell=\mathrm{m}=1$
From (1) $\frac{1-\alpha}{1}=-1 \quad \Rightarrow \quad \alpha=2$
$\& \frac{1-\gamma}{-2}=-1 \quad \Rightarrow \quad \gamma=-1$
12. Which of the following inequalities is/are TRUE?
(A) $\int_{0}^{1} x \cos x d x \geq \frac{3}{8}$
(B) $\int_{0}^{1} x \sin x d x \geq \frac{3}{10}$
(C) $\int_{0}^{1} x^{2} \cos x d x \geq \frac{1}{2}$
(D) $\int_{0}^{1} x^{2} \sin x d x \geq \frac{2}{9}$

Ans. (A,B,D)

Sol. (A) $\quad \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots$
$\cos x \geq 1-\frac{x^{2}}{2}$
$\int_{0}^{1} x \cos x \geq \int_{0}^{1} x\left(1-\frac{x^{2}}{2}\right)=\frac{1}{2}-\frac{1}{8}$
$\int_{0}^{1} x \cos x \geq \frac{3}{8}$ (True)
(B) $\quad \sin x \geq x-\frac{x^{3}}{6}$
$\int_{0}^{1} x \sin x \geq \int_{0}^{1} x\left(x-\frac{x^{3}}{6}\right) d x$
$\int_{0}^{1} x \sin x \geq \frac{1}{3}-\frac{1}{30} \Rightarrow \int_{0}^{1} x \sin x d x \geq \frac{3}{8}$
(D) $\int_{0}^{1} x^{2} \sin x d x \geq \int_{0}^{1} x^{2}\left(x-\frac{x^{3}}{6}\right) d x$
$\int_{0}^{1} x^{2} \sin x d x \geq \frac{1}{4}-\frac{1}{36}$
$\int_{0}^{1} x^{2} \sin x d x \geq \frac{2}{9}$ (True)
(C) $\quad \cos x<1$
$x^{2} \cos x<x^{2}$
$\int_{0}^{1} x^{2} \cos x d x<\int_{0}^{1} x^{2} d x$
$\int_{0}^{1} \mathrm{x}^{2} \cos \mathrm{xdx}<\frac{1}{3}$
So option 'C' is incorrect.

SECTION-3 : (Maximum Marks : 24)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks $\quad:+4$ If ONLY the correct numerical value is entered;
Zero Marks $\quad: 0 \quad$ In all other cases.
13. Let m be the minimum possible value of $\log _{3}\left(3^{\mathrm{y}_{1}}+3^{\mathrm{y}_{2}}+3^{\mathrm{y}_{3}}\right)$, where $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}$ are real numbers for which $y_{1}+y_{2}+y_{3}=9$. Let M be the maximum possible value of $\left(\log _{3} \mathrm{x}_{1}+\log _{3} \mathrm{x}_{2}+\log _{3} \mathrm{x}_{3}\right)$, where x_{1}, x_{2}, x_{3} are positive real numbers for which $x_{1}+x_{2}+x_{3}=9$. Then the value of $\log _{2}\left(m^{3}\right)+\log _{3}\left(M^{2}\right)$ is \qquad .
Ans. (8.00)
Sol. $\frac{3^{y_{1}}+3^{y_{2}}+3^{y_{3}}}{3} \geq\left[3^{\left(y_{1}+y_{2}+y_{3}\right)}\right]^{\frac{1}{3}}$
$\Rightarrow \quad 3^{y_{1}}+3^{y_{2}}+3^{y_{3}} \geq 3^{4}$
$\Rightarrow \quad \log _{3}\left(3^{y_{1}}+3^{y_{2}}+3^{y_{3}}\right) \geq 4$
$\Rightarrow \mathrm{m}=4$
Also, $\frac{\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}}{3} \geq \sqrt[3]{\mathrm{x}_{1} \mathrm{X}_{2} \mathrm{x}_{3}}$
$\Rightarrow \quad \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \leq 27$
$\Rightarrow \log _{3} x_{1}+\log _{3} x_{2}+\log _{3} x_{3} \leq 3$
$\Rightarrow M=3$
Thus, $\log _{2}\left(\mathrm{~m}^{3}\right)+\log _{3}\left(\mathrm{M}^{2}\right)=6+2$

$$
=8
$$

14. Let $a_{1}, a_{2}, a_{3}, \ldots$. be a sequence of positive integers in arithmetic progression with common difference 2. Also, let $b_{1}, b_{2}, b_{3}, \ldots$. be a sequence of positive integers in geometric progression with common ratio 2 . If $\mathrm{a}_{1}=\mathrm{b}_{1}=\mathrm{c}$, then the number of all possible values of c , for which the equality

$$
2\left(\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots .+\mathrm{a}_{\mathrm{n}}\right)=\mathrm{b}_{1}+\mathrm{b}_{2}+\ldots . .+\mathrm{b}_{\mathrm{n}}
$$

holds for some positive integer n, is \qquad
Ans. (1.00)

Sol. Given $2\left(a_{1}+a_{2}+\ldots \ldots+a_{n}\right)=b_{1}+b_{2}+\ldots \ldots+b_{n}$
$\Rightarrow \quad 2 \times \frac{\mathrm{n}}{2}\left(2 \mathrm{c}+(\mathrm{n}-2) \mathrm{x}_{2}\right)=\mathrm{c}\left(\frac{2^{\mathrm{n}}-1}{2-1}\right)$
$\Rightarrow \quad 2 n^{2}-2 n=c\left(2^{n}-1-2 n\right)$
$\Rightarrow \quad \mathrm{c}=\frac{2 \mathrm{n}^{2}-2 \mathrm{n}}{2^{\mathrm{n}}-1-2 \mathrm{n}} \in \mathbb{N}$
So, $\quad 2 n^{2}-2 n \geq 2^{n}-1-2 n$
$\Rightarrow \quad 2 n^{2}+1 \geq 2^{n} \Rightarrow n<7$
$\Rightarrow \quad \mathrm{n}$ can be $1,2,3, \ldots$,
Checking c against these values of n
we get $\mathrm{c}=12 \quad($ when $\mathrm{n}=3)$
Hence number of such $\mathrm{c}=1$
15. Let $f:[0,2] \rightarrow R$ be the function defined by
$f(x)=(3-\sin (2 \pi x)) \sin \left(\pi x-\frac{\pi}{4}\right)-\sin \left(3 \pi x+\frac{\pi}{4}\right)$
If $\alpha, \beta \in[0,2]$ are such that $\{x \in[0,2]: f(x) \geq 0\}=[\alpha, \beta]$, then the value of $\beta-\alpha$ is \qquad
Ans. (1.00)
Sol. Let $\pi \mathrm{x}-\frac{\pi}{4}=\theta \in\left[\frac{-\pi}{4}, \frac{7 \pi}{4}\right]$
So, $\left(3-\sin \left(\frac{\pi}{2}+2 \theta\right)\right) \sin \theta \geq \sin (\pi+3 \theta)$
$\Rightarrow \quad(3-\cos 2 \theta) \sin \theta \geq-\sin 3 \theta$
$\Rightarrow \quad \sin \theta\left[3-4 \sin ^{2} \theta+3-\cos 2 \theta\right] \geq 0$
$\Rightarrow \quad \sin \theta(6-2(1-\cos 2 \theta)-\cos 2 \theta) \geq 0$
$\Rightarrow \quad \sin \theta(4+\cos 2 \theta) \geq 0$
$\Rightarrow \quad \sin \theta \geq 0$
$\Rightarrow \quad \theta \in[0, \pi] \Rightarrow 0 \leq \pi x-\frac{\pi}{4} \leq \pi$
$\Rightarrow \quad \mathrm{x} \in\left[\frac{1}{4}, \frac{5}{4}\right]$
$\Rightarrow \quad \beta-\alpha=1$
16. In a triangle PQR , let $\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{QR}}, \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{RP}}$ and $\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{PQ}}$. If
$|\vec{a}|=3,|\vec{b}|=4$ and $\frac{\vec{a} \cdot(\vec{c}-\vec{b})}{\vec{c} \cdot(\vec{a}-\vec{b})}=\frac{|\vec{a}|}{|\vec{a}|+|\vec{b}|}$, then the value of $|\vec{a} \times \vec{b}|^{2}$ is \qquad
Ans. (108.00)

Sol. We have $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
$\Rightarrow \quad \overrightarrow{\mathrm{c}}=-\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}$
Now, $\frac{\vec{a} \cdot(-\vec{a}-2 \vec{b})}{(-\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b})}=\frac{3}{7}$
$\Rightarrow \quad \frac{9+2 \vec{a} \cdot \vec{b}}{9-16}=\frac{3}{7}$

$\Rightarrow \quad \vec{a} \cdot \vec{b}=-6$
$\Rightarrow \quad|\vec{a} \times \vec{b}|^{2}=a^{2} b^{2}-(\vec{a} \cdot \vec{b})^{2}=9 \times 16-36=108$
17. For a polynomial $g(x)$ with real coefficient, let m_{g} denote the number of distinct real roots of $\mathrm{g}(\mathrm{x})$.

Suppose S is the set of polynomials with real coefficient defined by
$S=\left\{\left(x^{2}-1\right)^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right): a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}$.
For a polynomial f, let f^{\prime} and $\mathrm{f}^{\prime \prime}$ denote its first and second order derivatives, respectively. Then the minimum possible value of $\left(m_{f}+m_{f^{\prime}}\right)$, where $f \in S$, is \qquad
Ans. (5.00)
Sol. $f(x)=\left(x^{2}-1\right)^{2} h(x) ; h(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$
Now, $f(1)=f(-1)=0$
$\Rightarrow \quad f^{\prime}(\alpha)=0, \alpha \in(-1,1) \quad$ [Rolle's Theorem]
Also, $f^{\prime}(1)=f^{\prime}(-1)=0 \Rightarrow f^{\prime}(\mathrm{x})=0$ has atleast 3 root, $-1, \alpha, 1$ with $-1<\alpha<1$
$\Rightarrow \quad f^{\prime \prime}(\mathrm{x})=0$ will have at leeast 2 root, say β, γ such that
$-1<\beta<\alpha<\gamma<1 \quad$ [Rolle's Theorem]
So, $\min \left(\mathrm{m}_{f^{\prime \prime}}\right)=2$
and we find $\left(\mathrm{m}_{f^{\prime}}+\mathrm{m}_{f^{\prime \prime}}\right)=5$ for $f(\mathrm{x})=\left(\mathrm{x}^{2}-1\right)^{2}$.
Thus, Ans. 5
18. Let e denote the base of the natural logarithm. The value of the real number a for which the right hand limit

$$
\lim _{x \rightarrow 0^{+}} \frac{(1-x)^{\frac{1}{x}}-e^{-1}}{x^{a}}
$$

is equal to a nonzero real number, is \qquad .
Ans. (1.00)
$\mathrm{e}^{\left(\frac{\ln (1-\mathrm{x})}{\mathrm{x}}\right)}-\frac{1}{-}$
Sol. $\lim _{x-0^{+}} \frac{e}{x^{a}}$

$$
\begin{aligned}
& =\lim _{x-0^{+}} \frac{1}{\mathrm{e}} \frac{\mathrm{e}^{\left(1+\frac{\ln (1-\mathrm{x})}{\mathrm{x}}\right)}-1}{\mathrm{x}^{\mathrm{a}}} \\
& =\frac{1}{\mathrm{e} \lim _{\mathrm{x}-0^{+}} \frac{1+\frac{\ln (1-\mathrm{x})}{\mathrm{x}}}{\mathrm{x}^{\mathrm{a}}}} \\
& =\frac{1}{\mathrm{e}} \lim _{\mathrm{x}-0^{+}} \frac{\ln (1-\mathrm{x})+\mathrm{x}}{\mathrm{x}^{(\mathrm{a}+1)}} \\
& =\frac{1}{\mathrm{e}} \lim _{\mathrm{x}-0^{+}} \frac{\left(-\mathrm{x}-\frac{\mathrm{x}^{2}}{2}-\frac{\mathrm{x}^{3}}{3}-\ldots \ldots .\right)+\mathrm{x}}{\mathrm{x}^{\mathrm{a}+1}}
\end{aligned}
$$

Thus, $\mathrm{a}=1$

ALIEN
ALLEN Digital
Introducing

- Live Online Classes along with Interactive Happy Learning (IHL) Video Lectures JEE (Main + Adv.) | JEE (Main) | NEET-UC PNCF | e-Boards | e-Doubt Solutions 8: www.allen.ac.in C:8306814555

