Strictly Confidential: (For Internal and Restricted use only) Senior School Certificate Examination-2020
 Marking Scheme - PHYSICS THEORY (042)

General Instructions: -

1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.
2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
4. Evaluators will mark $(\sqrt{ })$ wherever answer is correct. For wrong answer ' X "be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
6. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
9. A full scale of marks $0-70$ has to be used. Please do not hesitate to award full marks if the answer deserves it.
10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on a reply.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
15. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
16. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

MARKING SCHEME: PHYSICS			
QUESTION PAPER CODE: 55/1/1			
Q.No.	Value Points/Expected Answer	Marks	Total Marks
SECTION A			
1	(A) no net charge is enclosed by the surface	1	1
2	(C) $-q L E$	1	1
3	(C) No current flows in the potentiometer wire at balance	1	1
4	(B) $3: 2$	1	1
5	(D) material of the turns of the coil	1	1
6	(A) increases the resolving power of telescope	1	1
7	(A) 1.47	1	1
8	(A) red colour	1	1
9	(D) The stability of atom was established by the model	1	1
10	(C) $1: 3$	1	1
11	0.15G	1	1
12	Eddy	1	1
13	Four times	1	1
14	Integral OR Nucleons	1	1
15	$\sqrt{3}$	1	1
16	$\oint B . d l=\mu_{0}\left(i_{c}+i_{d}\right)$	1	1
17	Decreases or reduce	1	1
18	4.8 fermi OR $\frac{1}{1836}$	1	1
19	M_{2}	1	1
20	Si \& Ge cannot be used for fabrication of visible LED because their energy gap is less 1.8 eV	1	1

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{SECTION B} \\
\hline 21 \& \begin{tabular}{l}
(a) Principle \\
1 mark \\
(b) Circuit diagram for determining unknown resistance of meter bridge \\
Meter bridge works on the principle of a balanced wheatstone bridge. \\
\(\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}\) at null point when \(\mathrm{Ig}=0\) \\
(unknown)
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$ \& 2

\hline 22 \& | Formula for parallel plate |
| :--- |
| $1 / 2$ mark |
| Calculation of effective capacitance of the combination |
| 1 mark |
| Relation $\mathrm{K}, \mathrm{K}_{1}$ and K_{2} |
| $1 / 2$ mark $C_{1}=\frac{k \epsilon_{O} A}{d}$ |
| Capacitor are connected in series $\begin{gathered} C_{2}=\frac{C^{\prime} C^{\prime \prime}}{C^{\prime}+C^{\prime \prime}}=\left(\frac{2 K_{1} K_{2}}{K_{1}+K_{2}}\right) \frac{\epsilon_{o} A}{d} \\ \mathrm{C}_{1}=\mathrm{C}_{2} \\ K=\frac{2 K_{1} K_{2}}{K_{1}+K_{2}} \end{gathered}$ | \& $1 / 2$

1
1 \& 2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Lens Maker's formula \\
Derivation of focal length of three lenses
\[
\because \frac{1}{v}-\frac{1}{u}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)------1
\] \\
When \(u=\infty\) and \(v=f\)
\[
\begin{gathered}
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)--------2 \\
{\left[n=\frac{n_{2}}{n_{1}}\right]}
\end{gathered}
\] \\
From Eq 1 and 2
\[
\frac{1}{f}=\frac{1}{v}-\frac{1}{u} \text { then lens formula }
\] \\
[Even if the student derives \(\frac{1}{f}=\frac{1}{v}-\frac{1}{u}\) for biconvex lens, award \(11 / 2\) marks]
\end{tabular} \& 11/2 \& 2 \\
\hline 25 \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Magnetic field at point \(P\) \& \(11 / 2\) mark \\
Curve \& \(1 / 2\) mark \\
\hline
\end{tabular} \\
a)
\[
\begin{gathered}
B=\frac{\mu_{o} I}{2 \pi x} \\
B_{P}=B_{1}-B_{2}=\frac{\mu_{o} I}{2 \pi x}-\frac{\mu_{0} I}{2 \pi(d-x)}=\frac{\mu_{o} I(d-2 x)}{2 \pi(d-x) x}
\end{gathered}
\] \\
b)
\end{tabular} \& \(1 / 2\)
1
1

$1 / 2$ \& 2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 27 \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Explanation of depletion layer and potential barrier \\
\& \(1 / 2+1 / 2 \mathrm{mark}\) \\
Effect on depletion layer \& \(1 / 2 \mathrm{mark}\) \\
Effect on Potential barrier \& \(1 / 2 \mathrm{mark}\) \\
\hline
\end{tabular} \\
The small region in the vicinity of the junction which is depleted of free charge carrier and has only immobile ions is called depletion region/ layer. \\
The accumulation of negative charges in p - region and positive charges in \(n\) - region set up a potential difference across the junction, which acts as a barrier and is called barrier potential. \\
In forward bias (a) width of depletion layer decreases \\
(b) value of potential decreases
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$ \& 2

\hline \& SECTION C \& \&

\hline 28 \& | a) Internal resistance |
| :--- |
| (a) |
| Current drawn from cell - 1 $I_{1}=\frac{E_{1}-V}{r_{1}}$ |
| Current drawn from cell - 2 |
| Resultant current $\begin{array}{r} I_{2}=\frac{E_{2}-V}{r_{2}} \\ I=I_{1}+I_{2} \end{array}$ |
| On solving $\begin{gathered} \therefore I=\frac{E_{1} r_{2}+E_{2} r_{1}}{r_{1} r_{2}}-V\left(\frac{r_{2}+r_{1}}{r_{1} r_{2}}\right) \\ \therefore V=\frac{E_{1} r_{2}+E_{2} r_{1}}{r_{1} r_{2}}-I\left(\frac{r_{1} r_{2}}{r_{2}+r_{1}}\right) \\ V=E_{e q}-I r_{e q} \\ E_{e q}=\frac{E_{1} r_{2}+E_{2} r_{1}}{r_{1}+r_{2}} \\ r_{e q}=\frac{r_{1} r_{2}}{r_{2}+r_{1}} \end{gathered}$ | \& $11 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
OR \\
a) Definition and expression \\
1 mark \\
b) Conversion of Galvanometer \\
(i) into ammeter \\
1 mark \\
(ii) Effective resistance \\
1 mark \\
a) Deflection per unit current
\[
I_{s}=\frac{\theta}{I}=\frac{B N A}{K}
\] \\
b) (i) By connecting a low resistance \(\left(\mathrm{R}_{\mathrm{s}}\right)\) in parallel to galvanometer such that
\[
\left(I_{0}-I_{g}\right) R_{s}=I_{g} G
\] \\
(ii) effective resistance
\[
\begin{gathered}
\frac{1}{R_{A}}=\frac{1}{R_{S}}+\frac{1}{G}=\frac{G+R_{S}}{R_{S} G} \\
\therefore R_{A}=\frac{R_{S} G}{G+R_{S}}
\end{gathered}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

1 \& 3

\hline 30 \& | (a) Peak value of current and phasor 1 mark
 Potential across R $1 / 2$ mark
 Potential across C $1 / 2$ mark
 (b) Phase difference $1 / 2 \mathrm{mark}$
 Identification $1 / 2 \mathrm{mark}$ |
| :--- |
| (a) | \& 1/2 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Peak value of current
\[
\begin{gathered}
I_{0}=\frac{V_{0}}{Z}=\frac{V_{0}}{\sqrt{X_{c}^{2}+R^{2}}} \\
X_{c}=\frac{1}{\omega C}
\end{gathered}
\] \\
(i) \(\quad V_{R}=I_{0} R=\frac{V_{0} R}{\sqrt{X_{c}^{2}+R^{2}}}\) \\
(ii) \(\quad V_{c}=I_{0} X_{c}=\left(\frac{V_{0}}{\sqrt{X_{C}^{2}+R^{3}}}\right) X_{c}\) \\
(b) From phasor
\[
\tan \phi=\frac{X_{c}}{R}
\] \\
Current leads the applied voltage by phase \(\phi\)
\end{tabular} \& \begin{tabular}{l}
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\)
\end{tabular} \& 3 \\
\hline 31 \& \begin{tabular}{l}
\begin{tabular}{|lr|}
\hline a) Dependence on distance D from slit \& 1 mark \\
b) Dependence on slit separation d \& 1 mark \\
c) Dependence on distance between source and slit \\
\& 1 mark \\
\hline
\end{tabular} \\
(a) Fringe width increases, \(\beta \propto D\) \\
(b) Fringe width decreases, \(\beta \propto \frac{1}{d}\) \\
(c) Fringes disappear because \(\frac{s}{s}<\frac{\lambda}{d}\) not satisfied
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2+1 / 2 \\
\& 1 / 2+1 / 2 \\
\& 1 / 2+1 / 2
\end{aligned}
\] \& 3 \\
\hline 32 \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline (a) Speed of light in material medium \& 1 mark \\
(b) (i) Identification and Range \& \(1 / 2+1 / 2 \mathrm{mark}\) \\
(ii) Identification and Range \& \(1 / 2+1 / 2 \mathrm{mark}\) \\
\hline
\end{tabular} \\
(a) Speed of light in medium
\[
v=\frac{1}{\sqrt{\mu \epsilon}}=\frac{1}{\sqrt{\mu_{0} \mu_{r} \epsilon_{0} \epsilon_{r}}}
\] \\
(b) (i) Microwave range
\[
0.1 \mathrm{mt}-1 \mathrm{~mm}
\]
\[
\left(10^{-3} \mathrm{~m}-10^{-1} \mathrm{~m}\right)
\] \\
(ii) Infrared waves range \(1 \mathrm{~mm}-700 \mathrm{~nm}\)
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2+1 / 2 \\
\& 1 / 2+1 / 2
\end{aligned}
\] \& 3 \\
\hline 33 \& \begin{tabular}{|lc|}
\hline \begin{tabular}{ll}
\hline KE of \(\alpha\) particle \\
Calculation
\end{tabular} \& \begin{tabular}{l}
1 mark \\
2 marks
\end{tabular} \\
KE of \(\alpha\) particle \& \(E_{k \alpha}=\left(m_{y}-m_{x}-m_{\alpha}\right) c^{2}\) \\
\& \(=m_{y} c^{2}-m_{x} c^{2}-m_{\alpha} c^{2}\)
\end{tabular}

$=(235 \times 7.8-231 \times 7.835-4 \times 7.07) \mathrm{MeV}$ \& $$
\begin{gathered}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2 \\
1
\end{gathered}
$$ \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \(\mathrm{E}_{\mathrm{k}}<0\) wrong information [Award full marks till this step] \& \& \\
\hline 34 \& \begin{tabular}{l}
\begin{tabular}{|lc|}
\hline (a) Circuit diagram \& 1 mark \\
Working of Zener diode as DC voltage regulator \\
\& 1 mark \\
V-I graph \& \(1 / 2\) mark \\
(b) Reason of heavy doping \& \(1 / 2\) mark \\
\hline
\end{tabular} \\
(a) \\
If the input voltage increases, the current through \(\mathrm{R}_{\mathrm{s}}\) and Zener diode also increases. This increases the voltage drop across \(\mathrm{R}_{\mathrm{s}}\) without any changes in the voltage across the Zener diode. This is because in the breakdown region, Zener voltage remains constant even though the current through that Zener diode changes. \\
(a) \\
(b) \\
(b) To decrease the width of depletion region which increases electric field at the junction.
\end{tabular} \& \(1 / 2\)

$1 / 2$ \& 3

\hline \& SECTION D \& \&

\hline 35 \& | (a) (i) Electric Field inside hollow sphere $11 / 2$ mark |
| :--- |
| (ii) Electric Field outside hollow sphere $11 / 2$ mark |
| (b) (i) The net outward flux through cylinder 1 mark |
| (ii) The net charge present inside the cylinder 1 mark | \& \&

\hline
\end{tabular}

