Strictly Confidential: (For Internal and Restricted use only) Senior School Certificate Examination-2020 Marking Scheme - PHYSICS THEORY (042)

(55/2/1)

General Instructions: -

1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. Evaluation is a $10-12$ days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.
2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
4. Evaluators will mark $(\sqrt{ })$ wherever answer is correct. For wrong answer ' X "be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
6. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
9. A full scale of marks $0-70$ has to be used. Please do not hesitate to award full marks if the answer deserves it.
10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on a reply.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
15. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
16. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

MARKING SCHEME: PHYSICS (042)				
Code : 55/2/1				
Q.No.	Value Points/Expe	ted Answer	Marks	Total Marks
SECTION A				
1	(D) $\mathrm{R}=0$		1	1
2	(A) Resistivity		1	1
3	(A) move in a straight line.		1	1
4	(B) ferromagnetic material becom	aramagnetic	1	1
5	(A) electric field is changing		1	1
6	(A) X - rays		1	1
7	(C) zero as diffusion and drift curre	re equal and opposite.	1	1
8	(B) just below the conduction band		1	1
9	(A) binding energy per nucleon incr	ases	1	1
10	(A) neutron converts into a proton e	itting antineutrino.	1	1
11	$\left(\emptyset_{2}-\emptyset_{1}\right) \varepsilon_{0} /\left(\emptyset_{1}-\emptyset_{2}\right) \varepsilon_{0}$		1	1
12	Third OR $\frac{2 \lambda}{a}$ [Alternatively, broader]		1	1
13	Small/ shorter		1	1
14	Perpendicular		1	1
15	Blue		1	1
16	$\mathrm{X}_{\mathrm{c}}=\frac{1}{2 \pi \nu \mathrm{C}} \quad$ OR $\quad \mathrm{Z}=\mathrm{R}$		1	1
17	Zero		1	1
18			1	1
19	$\begin{aligned} & \hline 6.03 \times 10^{-7} \mathrm{~m} \\ & \text { [Award full } 1 \mathrm{mark} \text { even if a student } \\ & \hline \end{aligned}$	writes $6 \times 10^{-7} \mathrm{~m}$]	1	1
20	For a given photosensitive material, minimum cut-off frequency of the in threshold frequency, below which takes place, no matter how intense the	here exists a certain ident radiation, called the o emission of photo electrons incident light is.	1	1
SECTION B				
21	Definition of mobility or formula Derivation of relationship Mobility is defined as the magnitude electric field. $\mu=\frac{\mid \overline{\mathrm{V}}}{\mathrm{E}}$ [Even if a student writes only the m mark] Given $V_{d}=\frac{e \tau E}{m}$ Hence, $\mu=\frac{\mathrm{V}_{\mathrm{d}}}{\mathrm{E}}=\frac{\mathrm{e} \mathrm{\tau}}{\mathrm{~m}}$	1 1 of drift velocity per unit hematical relation award $1 / 2$	$1 / 2$ $1 / 2$	2

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\begin{tabular}{|l|l|}
\hline Definition of drift velocity \& 1 \\
Relation between current density and drift velocity \& 1 \\
\hline
\end{tabular} \\
The average speed with which electrons move when an electric field or potential difference is applied is called drift velocity.
\[
\overrightarrow{\mathrm{V}_{\mathrm{d}}}=\frac{-\mathrm{e} \overrightarrow{\mathrm{E}} \tau}{\mathrm{~m}}
\] \\
[Award \(1 / 2\) mark if student writes the formulae] \\
The amount of charge crossing the area A in time \(\Delta t\)
\[
\mathrm{I} \Delta \mathrm{t}=\mathrm{ne} \mathrm{~A}\left|\overrightarrow{\mathrm{~V}_{\mathrm{d}}}\right| \Delta \mathrm{t}
\] \\
Hence current density
\[
j=\frac{I}{A}=n e V_{d}
\]
\end{tabular} \& 1

$11 / 2$
$1 / 2$ \& 2

\hline 22 \& | Diagram $1 / 2$
 Formula $1 / 2$
 Calculation of value of shunt 1$\mathrm{I}_{\mathrm{g}}=1 \mathrm{~A}$ |
| :--- |
| Resistance of ammeter, $\stackrel{\delta}{\mathrm{R}}_{\mathrm{A}}=0.8 \Omega$ $\begin{aligned} & \mathrm{I}_{\mathrm{g}} R_{A}=\left(\mathrm{I}-\mathrm{I}_{\mathrm{g}}\right) \mathrm{S} \\ & \Rightarrow 1 \times 0.8=(5-1) \mathrm{S} \\ & \Rightarrow \quad \mathrm{~S}=0.2 \Omega \end{aligned}$ | \& 1/2 \& 2

\hline 23 \& | (a) Sharpness of resonance 1
 (b) Value of power factor 1 |
| :--- |
| (a) |
| Sharpness of resonance is the sharpness of the peak of the resonance curve / a graph between I_{m} and ω. The sharper or narrower the curve the narrower is the resonance or the resonance lasts over a very small range of frequencies / Q factor or quality factor is the measure of sharpness of curve. |
| (b) $\mathrm{Z}=\mathrm{R}$ |
| Hence Power factor $\cos \emptyset=\frac{\mathrm{R}}{\mathrm{Z}}$ | \& 1 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\cos \emptyset=1
\] \\
Even if a student just writes power factor is 1, award full 1 mark
\end{tabular} \& 1 \& 2 \\
\hline \& \begin{tabular}{l}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ OR } \\
\hline Deduction of expression for current \& 1 \\
(i) Graph V vs \(\omega \mathrm{t}\) \& \(1 / 2\) \\
(ii) Graph I vs \(\omega \mathrm{t}\) \& \(1 / 2\) \\
\hline
\end{tabular}
\[
\begin{aligned}
\mathrm{I}=\frac{\mathrm{dq}}{\mathrm{dt}}= \& \frac{d}{d t} \\
\& C \mathrm{~V}_{0} \sin \omega \mathrm{t}=\omega \mathrm{CV}_{0} \cos \omega \mathrm{t} \\
\& =\mathrm{I}_{0} \cos \omega \mathrm{t} \\
\& =\mathrm{I}_{0} \sin \left(\omega \mathrm{t}+\frac{\pi}{2}\right)
\end{aligned}
\] \\
where \(\mathrm{I}_{0}=\frac{\mathrm{V}_{0}}{(1 / \omega \mathrm{C})}\) \\
(i) \\
[Student can draw the two graphs separately also provided the graphs are co-related.]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

1 \& 2

\hline 24 \& | Identification of waves (a) \& (b) $1 / 2+1 / 2$
 Uses $1 / 2+1 / 2$ |
| :--- |
| (a) minimum wavelength: γ rays |
| (b) minimum frequency: Microwaves |
| γ rays are used to treat cancer |
| Microwaves are used for communication |
| [or any other correct use] | \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\] \& 2

\hline 25 \& | Values of f and u with sign conventions $1 / 2$
 Nature of image $1 / 2$
 Position of image 1 |
| :--- |
| The focal length $f=\frac{-R}{2}=-30 \mathrm{cmu}=-20 \mathrm{~cm}$ $\begin{gathered} \frac{1}{V}+\frac{1}{u}=\frac{1}{f} \\ \therefore \frac{1}{V}-\frac{1}{20}=-\frac{1}{30} \Rightarrow \frac{1}{V}=-\frac{1}{30}+\frac{1}{20} \\ \therefore V=+60 \mathrm{~cm} \end{gathered}$ |
| Nature of image: virtual, erect and magnified | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 26 \& \begin{tabular}{l}
\begin{tabular}{|l|l|}
\hline Identification of \(b\) and \(\theta\) \& \(1 / 2+1 / 2\) \\
Values of \(b\) \& \(1 / 2+1 / 2\) \\
\hline
\end{tabular} \\
(a) b represents impact parameter \\
\(\theta\) represents scattering angle \\
(b) (i) for \(\theta=0^{0}\) impact parameter is large or infinite \\
(ii) for \(\theta=180^{\circ}\) impact parameter is zero.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 2 \\
\hline 27 \& \begin{tabular}{l}
\begin{tabular}{|l|l|}
\hline V-I characteristics \& 1 \\
Explanation for voltage independence of reverse current \& 1 \\
\hline
\end{tabular}
 \\
Since reverse current is due to flow of minority charge carriers across the junction, it is limited due to the concentration of minority carriers on either side of the junction. It is therefore independent of the voltage applied.
\end{tabular} \& 1

1 \& 2

\hline \& SECTION C \& \&

\hline 28 \& | (a) Magnitude \& direction of net dipole moment $11 / 2$
 (b) Magnitude \& direction of net torque $11 / 2$ |
| :--- |
| (a) $\begin{aligned} P & =\left(p_{1}^{2}+p_{2}^{2}+2 p_{1} p_{2} \cos 120^{0}\right)^{1 / 2} \\ & =\left(2 p^{2}-p^{2}\right)^{1 / 2} \\ & =\mathrm{p} \end{aligned}$ |
| Making 60° angle with $\overrightarrow{p_{1}}$ and $\alpha=30^{\circ}$ (angle with X axis) $\left[p_{1}=p_{2}=p\right]$ |
| [Do not deduct $1 / 2$ mark if diagram is not drawn but dipole moment and its direction are correctly worked out. | \& $1 / 2$

$1 / 1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
If correct and complete vector diagram is drawn but dipole moment is not worked out then award 1 mark out of 1.5] \\
(b)
\[
\begin{gathered}
\vec{\tau}=\overrightarrow{\mathrm{P}} \times \overrightarrow{\mathrm{E}} \\
\tau=\mathrm{PE} \sin 30^{\circ} \\
=\frac{1}{2} \mathrm{pE}
\end{gathered}
\] \\
Direction of \(\vec{\tau}\) is into the plane of the paper or along - z direction.
OR
\begin{tabular}{|l|l|}
\hline (a) Equivalent capacitance \& 1 \\
(b) Maximum charge supplied \& 1 \\
(c) Total energy stored \& 1 \\
\hline
\end{tabular} \\
(a) \(\mathrm{C}=\mathrm{C}_{4}=4 \mu \mathrm{~F} \quad\) (as \(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}\) are short circuited) \\
(b) \\
(c)
\[
\begin{gathered}
\mathrm{Q}=\mathrm{CV}=4 \times 7 \mu \mathrm{C} \\
=28 \mu \mathrm{C} \\
U=\frac{1}{2} \mathrm{CV}^{2} \\
=\frac{1}{2} \times 4 \times 10^{-6} \times 7 \times 7=98 \times 10^{-6} \mathrm{~J}
\end{gathered}
\]
\end{tabular} \& \begin{tabular}{l}
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\) \\
1 \\
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\)
\end{tabular} \& 3

3

\hline 29 \& | (a) Derivation of balance condition 2
 (b) Circuit diagram 1 |
| :--- |
| (a) |
| In a balanced Wheatstone bridge $I_{g}=0$ $\therefore \mathrm{I}_{1}=\mathrm{I}_{3} \quad \text { and } \quad \mathrm{I}_{2}=\mathrm{I}_{4}$ |
| Applying loop rule in ADBA $\begin{align*} & -\mathrm{I}_{1} \mathrm{R}_{1}+0+\mathrm{I}_{2} \mathrm{R}_{2}=0 \\ & \Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}} \tag{i} \end{align*}$ |
| And in loop CBDC $\begin{align*} & \mathrm{I}_{2} \mathrm{R}_{4}+0-\mathrm{I}_{1} \mathrm{R}_{3}=0 \\ & \Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}} \quad \text { (ii) } \tag{ii} \end{align*}$ |
| From (i) and (ii) $\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}}$ |
| Condition for balanced Wheatstone bridge | \& 1/2 \&

\hline
\end{tabular}

	(b)	1	3
30	(a) Capacitance of the capacitor 1 (b) Value of inductance 1 (c) Graph 1 (a) From graph $X_{c}=6 \Omega$ at $v=100 \mathrm{~Hz}$ $\begin{gathered} X_{c}=\frac{1}{\omega C}=\frac{1}{2 \pi v C} \\ C=\frac{1}{2 \pi v X_{c}}=\frac{1}{2 \pi \times 600} \\ C=\frac{1}{1200 \pi}=0.265 \mathrm{mF}=0.265 \times 10^{-3} f \end{gathered}$ [Even if a student evaluates part(a)correctly using] any other point on the graph, award full 1 mark. (b) $\begin{gathered} \mathrm{X}_{\mathrm{C}}=\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=6 \text { at } 100 \mathrm{~Hz} \\ \mathrm{~L}=\frac{6}{2 \pi v} \\ =\frac{6}{2 \pi \times 100}=0.955 \times 10^{-2} \mathrm{H} \end{gathered}$ (c)	1/2	3
31	Differences in construction 1 mark Determination of position of object 2 marks Aperture of telescope objective lens is large whereas aperture of microscope objective is small [Alternatively, focal length of telescope objective is large whereas focal length of microscope objective is very small] [Award full 1 mark even if a student writes only one difference]	$1 / 2$ $1 / 2$	

\begin{tabular}{|c|c|c|c|}
\hline \& $$
\begin{gathered}
\mathrm{m}=\mathrm{m}_{\mathrm{o}} \times \mathrm{m}_{\mathrm{e}} \\
\mathrm{~m}_{\mathrm{e}}=1+\frac{\mathrm{D}}{\mathrm{f}_{\mathrm{e}}}=1+\frac{25}{5}=6 \\
\therefore \mathrm{~m}_{\mathrm{o}}=\frac{30}{6}=-5 \\
\mathrm{~m}_{\mathrm{o}}=\frac{\mathrm{v}}{\mathrm{u}}=-5 \\
\mathrm{v}=-5 \mathrm{u} \\
\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}} \\
\frac{1}{1.25}=\frac{1}{5 \mathrm{u}_{\mathrm{o}}}+\frac{1}{\mathrm{u}_{0}} \quad ; \mathrm{u}=-\mathrm{u}_{0} \\
\mathrm{u}_{0}=\frac{6}{5} \times 1.25=1.5 \mathrm{~cm} \\
m_{o}=\frac{v}{u}=\frac{f_{o}}{f_{o}+u_{o}} \\
-5=\frac{1.25}{1.25+\mathrm{u}_{\mathrm{o}}} \\
-7.5=5 \mathrm{u}_{\mathrm{o}} \\
\left.\mathrm{u}_{\mathrm{o}}=-1.5 \mathrm{~cm} \quad(\text { for last } 1 / 2 \text { mark })\right]
\end{gathered}
$$ \& $1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline 32 \& | Deduction of expression for threshold wavelength |
| :--- |
| 2 marks |
| Deduction of expression for work function |
| 1 mark $\mathrm{K}_{\max }=\frac{\mathrm{hc}}{\lambda_{1}}-\phi_{\mathrm{o}}=\mathrm{hc}\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{0}}\right)$ |
| when $\lambda=\lambda_{2}$ $\begin{gathered} 2 \mathrm{~K}_{\max }=\mathrm{hc}\left(\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{0}}\right) \\ \frac{\mathrm{K}_{\max }}{2 \mathrm{~K}_{\max }}=\frac{1}{2}=\frac{\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{0}}\right)}{\left(\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{0}}\right)} \\ \lambda_{\mathrm{o}}=\frac{\lambda_{1} \lambda_{2}}{2 \lambda_{2}-\lambda_{1}}=\text { Threshold wavelength } \\ \phi_{\mathrm{o}}=\frac{\mathrm{hc}}{\lambda_{0}}=\frac{\mathrm{hc}\left(2 \lambda_{2}-\lambda_{1}\right)}{\left(\lambda_{1} \lambda_{2}\right)} \end{gathered}$ | \& $1 / 2$

$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
1 \& 3

\hline 33 \& | a) Differentiation between Half life and Average life $1 / 2+1 / 2$ |
| :--- |
| b) Deduction of fraction of amount of the substance 2 |
| Half life is the time it takes for a radioactive sample, that has initially N_{o} radio nuclei, to reduce to $\frac{\mathrm{N}_{0}}{2}$ $\mathrm{T}_{1 / 2}=\frac{\ln 2}{\lambda}=\frac{0^{2} .693}{\lambda}$ |
| Mean life is obtained by adding the lives of all the nuclei over time 0 to infinity and dividing it by total number N_{o} of nuclei at $\mathrm{t}=0$ $\tau=1 / \lambda$ | \& $1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
[Even if a student writes only the relations for \(\mathrm{T}_{1 / 2}\) and \(\tau\) award full marks for the definitions]
\[
\mathrm{N}=\mathrm{N}_{\mathrm{o}} \mathrm{e}^{-\lambda \mathrm{t}}
\] \\
At \(\mathrm{t}=\tau=1 / \lambda\)
\[
\begin{gathered}
\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \times \frac{1}{\lambda}} \\
\frac{\mathrm{~N}}{\mathrm{~N}_{\mathrm{o}}}=\frac{1}{\mathrm{e}}
\end{gathered}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
1 \& 3 \\
\hline 34 \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Function of solar cell \& 1 mark \\
Working of solar cell \& \(11 / 2\) mark \\
IV characteristics \& \(1 / 2\) mark \\
\hline
\end{tabular} \\
Solar cell is a device which converts solar energy into electrical energy. \\
[Alternatively, when solar radiation falls on a solar cell, it generates emf.] \\
Working \\
When solar radiation falls on a solar cell three important phenomena occur \\
1) Generation: e-h pair generation near the depletion region \\
2) Separation: e-h will separate due to the electric field in depletion region \\
3) Collection- electrons are collected by front contact on \(n\) side and holes are collected by back contact on \(p\) side. \\
Thus, a potential difference will be created.
\end{tabular} \& 1

$11 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline \& SECTION D \& \&

\hline 35 \& | (a) Expression for electric field outside a charged shell 2
 Graph of E vs r 1
 b) Location of point where field is zero 2 |
| :--- |
| (a) | \& 1/2 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\mathrm{W}=\mathrm{q}_{1} \mathrm{~V}_{1}+\mathrm{q}_{2} \mathrm{~V}_{2}+\frac{1}{4 \pi \epsilon_{\mathrm{o}}} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}}
\] \\
[\(\mathrm{V}_{1}\) and \(\mathrm{V}_{2}\) are potentials at the two points in the electric field] \\
(b) \\
(i)
\[
\begin{gathered}
\mathrm{E}=\frac{-\mathrm{dV}}{\mathrm{dx}}=-\frac{d}{d x}(10 x+5) \\
\therefore \overrightarrow{\mathrm{E}}=-10 \hat{1} \mathrm{~N} / \mathrm{C}
\end{gathered}
\] \\
(ii) Electric flux through the cube, \(\phi=\) sum of electric flux through 6 faces \\
Electric flux through faces perpendicular Y and Z axis \(=0\) \\
\(\because \mathrm{E}\) is along x axis \\
Electric flux through faces perpendicular to x axis
\[
\begin{aligned}
\& =\phi_{1}+\phi_{2} \\
\& =10 \times(0.2)^{2}-10 \times(0.2)^{2} \\
\& =0
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

1
1
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 5

\hline 36 \& | (a) Magnetic field at a point on the axis of the current loop (b)Magnitude and direction of the magnetic force |
| :--- |
| (a) $d B=\frac{\mu_{0} I d l}{4 \pi\left(x^{2}+R^{2}\right)}$ |
| $d B$ has two components $d B_{x}$ and $d B_{\perp}$, perpendicular components from diametrically opposite elements dl cancel out, thus only $d B_{\mathrm{x}}$ components remain effective $\begin{aligned} & d \mathrm{~B}_{\mathrm{x}}=\mathrm{dB} \cos \theta \\ & \text { and } \cos \theta=\frac{\mathrm{R}}{\left(\mathrm{x}^{2}+\mathrm{R}^{2}\right)^{\frac{1}{2}}} \\ & \therefore \mathrm{~B}=\int \mathrm{dB}_{\mathrm{x}} \\ & =\int_{0}^{2 \pi \mathrm{R}} \frac{\mu_{0} \mathrm{IdlR}}{4 \pi\left(\mathrm{x}^{2}+\mathrm{R}^{2}\right)^{\frac{3}{2}}} \end{aligned}$ | \& $1 / 2$

$11 / 2$

$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& \tau=\left(F_{1} \frac{a}{2}+F_{2} \frac{a}{2}\right) \sin \theta \\
\& \tau=I(a b) \sin \theta
\end{aligned}
\] \\
where \(a b=A\) (area of the loop)
\[
\Rightarrow \tau=I A B \sin \theta
\] \\
for \(N\) number of turns
\[
\begin{aligned}
\tau \& =N I A B \sin \theta \\
\tau \& =\vec{M} \times \vec{B}
\end{aligned}
\] \\
Where magnetic moment M=NIA \\
Galvanometer has Radial magnetic field to increase the field strength and to make torque independent of orientation \(\theta /\) it maximise the torque \\
(b) \\
The kinetic energy \(K E=\frac{1}{2} \frac{q^{2} B^{2} R^{2}}{m}\)
\[
\begin{aligned}
= \& \frac{1}{2} \times \frac{\left(1.6 \times 10^{-19}\right)^{2} \times(0.4)^{2} \times(0.4)^{2}}{1.6 \times 10^{-27}} J \\
\& =\frac{\left(1.6 \times 10^{-19}\right)^{2} \times(0.4)^{2} \times(0.4)^{2}}{2 \times 1.6 \times 10^{-27} \times 1.6 \times 10^{-19}} \mathrm{eV} \\
= \& 1.28 \mathrm{MeV}
\end{aligned}
\]
\end{tabular} \& 1/2 \& 5 \\
\hline 37 \& \begin{tabular}{l}
(a) Derivation of the lens maker's formula \\
(b) Ray diagram \\
(c) Focal length of the mirror \\
(a)
\end{tabular} \& \(1 / 2\)

$1 / 2$ \&

\hline
\end{tabular}

| (a)
 Wavefront is a surface of constant phase.
 Alternatively, It is the locus of all those points which are in the
 same phase of disturbance.
 The wave propagates in a direction perpendicular to the
 wavefront through secondary wavelets originating from
 different points on it. | $1 / 2$ |
| :--- | :--- | :--- | :--- |
| Incident | $1 / 2$ |

