Strictly Confidential: (For Internal and Restricted use only) Senior School Certificate Examination-2020 Marking Scheme – PHYSICS THEORY (042)

(55/3/1)

General Instructions: -

- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.
- 2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
- 3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluators will mark(√) wherever answer is correct. For wrong answer 'X"be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- 6. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
- 11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong totaling of marks awarded on a reply.
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.

- Marks in words and figures not tallying.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- 12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
- 13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- 15. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- 16. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

	MARKING SCHEME: PHYSICS		
	QUESTION PAPER CODE: 55/3/1	T	T
Q.No.	Value Points/Expected Answer	Marks	Total Marks
	SECTION A		11242115
1	(D)	1	1
	energy will be provided by external source displacing the charge.		
2	(A)	1	1
	1		
	$\left \frac{1}{\epsilon_o}\right $		
3	(A)	1	1
	$\left \frac{C_1}{C_2} \right $		
	C_2		
4		1	1
4	(C)	1	1
	Decreases with increase in its conductivity		
5	(B)	1	1
	Mobility		
6	(D)	1	1
	P		
	$\left\lfloor \frac{r}{4} \right\rfloor$		
	T		
7	(D)	1	1
	1		
	$\left \frac{1}{2}\right $		
	$\overline{n^2}$		
8	(C)	1	1
	heavily doped n-side as well as p-side		
9	(D)	1	1
	Helix		
10	(D)	1	1
	-F		
11	Cylindrical	1	1
12	Divergent lens/ Concave lens	1	1
13 14	Two $\sqrt{3}$	1 1	1 1
15		1	1
13	Intensity OR	1	
	$h(v-v_o)$		
16	Z=R	1	1
	Alternatively, Impedance=Resistance		
17	Copper	1	1

18	Zero Eddy currents are produced in metal block / block gets heated	1	1
19	J.C Bose observed / produced electromagnetic waves of short wavelength/ did very significant work in production of e.m waves.	1	1
20	X rays are used as diagnostic tool in medicine / Gamma rays are used to destroy cancer cells.	1	1
21	SECTION B		
21	Writing formula		
	$E_1 \propto l_1$ ½ mark		
	$E_1 - E_2 \propto l_2$ ½ mark		
	Calculating $\frac{E_1}{E_2}$ 1 mark		
	$E_1 \propto l_1$	1/2	
	$E_1 - E_2 \propto l_2$	1/2	
	$\frac{E_1 - E_2}{E_1} = \frac{l_2}{l_1}$		
	$1 - \frac{E_2}{E_1} = \frac{l_2}{l_1}$	1/2	
	$\frac{E_2}{E_1} = 1 - \frac{l_2}{l_1} = 1 - \frac{1}{3} = \frac{2}{3}$		
	$\frac{E_1}{E_2} = \frac{3}{2}$	1/2	2
22	Modification in magnetic field pattern by paramagnetic material 1 mark		
	Modification in magnetic field pattern by diamagnetic material 1 mark		
	(a) (b)	1+1	2
	diamagnetic paramagnetic		

Deducing the ex	pression for Mutual Inductance: 2 marks		
	as the shape shown here through the larger coil.		
	J. Lurus hz Lurus	1/2	
Magnetic field, due	to the current at the centre of coil is		
whole area of the sn	$B_C = \frac{\mu_0 I N_2}{2r_2}$ s to be the value of the magnetic field over the name of the smaller coil (as r ₁ << r ₂) and the smaller coil	1/ ₂	
But Magnetic flux=	$B_c(\pi r_1^2)N_1 = \frac{\mu_o I N_2}{2r_2} \pi r_1^2 N_1$ $= \left(\frac{\mu_o \pi r_1^2}{2r_2} N_1 N_2\right) I$ MI Inductance of the system $\therefore MI = \frac{\mu_o \pi r_1^2 N_1 N_2}{2r_2} I$	1/2	
	$2r_{2}$ $M = \frac{\mu_{o}\pi r_{1}^{2}N_{1}N_{2}}{2r_{2}}$	1/2	
	romagnetic wave by an oscillating charge 1 mark the frequency of radiated wave and the llating charge 1 mark		
which produces an source of oscillating	re produces an oscillating electric field in spa oscillating magnetic field, which in turn, is electric field, and so on. The oscillating elects is thus regenerate each other, as the watthe space.	is a tric	
TD1 C C.1	e electromagnetic wave equals the frequency	y of 1	

	OR		
	a) Explaining the fact that e.m waves carry energy		
	1 mark		
	b) Correct Explanation 1 mark		
	a) Consider a plane perpendicular to the direction of propagation of the electromagnetic wave. If there are, on this plane, electric charges, they will be set and sustained in motion by the electric and magnetic fields of the electromagnetic wave. The charges thus acquire energy and momentum from the waves.	1	
	b) When the sun shines on your hand, you feel the energy being absorbed from the electromagnetic waves (your hands get warm). Electromagnetic waves also transfer momentum to your hand but because c is very large, the amount of momentum transferred is extremely small and you do not feel the pressure.	1	2
	[For any other alternative correct explanation also, award full 2 marks]		
25	Determining power of the combination 1 ½ mark		
	Nature of combination ½ mark		
	$\frac{1}{f} = \frac{1}{f_1} - \frac{1}{f_2}$	1/2	
	$\frac{1}{f} = \frac{f_2 - f_1}{f_1 f_2}$	1/2	
	$\therefore P = \frac{f_2 - f_1}{f_1 f_2}$	1/2	
	Because $f_2 < f_1$: P is negative : nature is diverging lens	1/2	2
	OR		
	Writing the formula 1 mark (a) effect of wavelength on Resolving power ½ mark (b) effect of diameter of lens on Resolving power ½ mark		
	Resolving power of compound microscope is $Resolving\ Power = \frac{2\mu\ sin\theta}{1.22\lambda}$	1	

	 Justification of the following is based on the above formula: a) If λ decreases, Resolving Power increases. b) If diameter of objective lens is increased, sinθ increases, Resolving Power increases 	1/2 1/2	2
26	a) definition of threshold frequency ½ mark b) definition of stopping potential ½ mark incorporating these terms in Einstein's photoelectric equation 1 mark (a) Threshold Frequency: The minimum cut off frequency v_o below which no photoelectric emission is possible, even if the intensity is large (b) Stopping Potential: The minimum negative (retarding) potential V_o given to the plate for which the photocurrent stops or becomes zero is called the cut off or stopping potential.	1/2	
	$h\nu = \phi_0 + \frac{1}{2}mV_{max}^2$	1/2	
	$hv = hv_o + eV_o$	1/2	2
27	a) Stating the number of spectral lines Showing the transitions in energy level diagram 1 mark b) Stating the transition for the shortest wave length emission ½ mark a) number of spectral lines =6 energy level diagram	1/2	
	b) n=4 to n=1		
	SECTION C	1/2	2
28	a) differentiating between random velocity and drift velocity 1 mark Order of magnitude 1 mark b) drawing the graph showing the variation of drift velocity as a function of Current density 1 mark		

Page **7** of **18**

	a) Write any one difference			
	Random Velocity <i>v</i> 1. The velocity acquired by the free electrons in the absence of electric field. 2. The average random velocity is zero. 3. Has quite a large value	Drift Velocity v_d 1. The average velocity acquired by the free electrons in presence of electric field. 2. The average drift velocity is not zero. 3. Has a very small value	1	
	Order of magnitude of random ve Order of magnitude of drift veloci	elocity is 10^2 m/s.	1/ ₂ 1/ ₂	
	[Note: If the student writes drift so than random velocity, award the left a student writes $J = \frac{l}{A} = \frac{n}{2}$ the graph award ½ mark only]	ast 1 mark]	1	3
29	a) writing the formula for resor	½ mark		
	calculating this angular frequen			
	b) writing the formula for Q value	llue ½ mark 1 mark		
	a) $\omega_o =$	$\frac{1}{\sqrt{LC}}$	1/2	
	$={\sqrt{2\times3}}$	$\frac{1}{2\times 10^{-6}}$	1/2	
	=125	rad/s	1/2	
	$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$	or $Q = \frac{L\omega}{R}$	1/2	
	$Q = \frac{1}{10} \sqrt{\frac{2}{32 \times 10^{-6}}} = 25 \text{Altern}$	actively $Q = \frac{2 \times 125}{10} = 25$	1	3

	OR		
	a) Calculating rms value of current 1 mark		
	calculating peak value of current 1 mark		
	b) Phase difference between current through inductor and applied voltage 1/2 mark		
	change in phase difference ½ mark		
	a) $V = \omega I = 2\pi \nu I$		
	$X_{L} = \omega L = 2\pi \nu L$ $\therefore X_{L} = 2\pi \times 50 \times \frac{5}{\pi} = 500 \Omega$	1/2	
	$I_{rms} = \frac{200}{500} = \frac{2}{5} = 0.4A$	1/2	
	$I_0 = \sqrt{2} I_{rms}$	1/2	
	$= \sqrt{2} \times 0.4$ $= 0.56 A$ [Even if student expresses the answer as $(0.4\sqrt{2})A$ give the last ½ marks]	1/2	
	b) $\frac{\pi}{2} \text{ or } 90^{0}$ decreases	1/2 1/2	3
30	a) Ray diagram for concave mirror ½ mark derivation of mirror formula 2 marks b) Correct explanation ½ mark		
	a) Ray diagrams for concave mirror		
	B' B' P	1/2	
	Derivation of Mirror Formula		
	From the diagram, $\Delta A'B'F \& \Delta MPF$ are similar		
	$\therefore \frac{B'A'}{PM} = \frac{B'F}{FP}$		

Page 9 of 18

	$\frac{B'A'}{BA} = \frac{B'F}{FP} \ (\because PM = AB) eq1$	1/2	
	Since $\angle APB = \angle A'PB'$		
	$\Delta A'B'P \& \Delta ABP$ are also similar		
	$\frac{B'A'}{BA} = \frac{B'P}{BP} eq \ 2$	1/2	
	Comparing eq. 1 and eq. 2		
	$\frac{B'P}{BP} = \frac{B'P - FP}{FP}$		
	As per the sign convention $B'P = -\nu$, $FP = -f$, $BP = -u$		
	$\frac{-v+f}{-f} = \frac{-v}{-u} = \frac{v}{u}$ $-vu + uf = -vf$ Dividing by uvf $\Rightarrow \frac{1}{v} + \frac{1}{u} = \frac{1}{f}$	1	
	b) Magnification is different for different object distances	1/2	3
31	a) Explaining the high nuclear density 1 mark b) Explaining the non-Colombian nature 1 mark c) Drawing the graph 1 mark		
	a) Volume of Nucleus is very small but its mass is almost the total mass of the atom		
	Now density = $\frac{Mass}{Volume}$		
	That is why density of nucleus is very high. Alternatively , the matter consisting of atoms, has a very large amount of empty space.	1	
	b) Nuclear forces are very strong, attractive and independent of charge and are short ranged. Whereas Colombian Force are charge dependent and long range. (Accept any one point of difference)	1	
	Potential energy (MeV)		
	Jo -100 r ₀ 1 2 3 r (fm)	1	3

32			
	Meaning of wave nature of electron 1 mark		
	Explaining the quantisation of angular momentum using		
	de Broglie hypothesis 2 marks		
	Moving electron can show wave characteristics.	1	
	$\sim \lambda \sim$		
	Nucleus	1/2	
	From the diagram	1/2	
	$2\pi r = n\lambda$ (Note: Award one mark here even if the student just writes this equation without drawing the diagram) According to de Broglie	72	
	$\lambda = \frac{h}{p}$ nh	1/2	
	$\therefore 2\pi r = n\lambda = \frac{nh}{p}$ $2\pi r = \frac{nh}{p}$		
	$mv = \frac{nh}{2\pi}$ where $n = 1,2,3,$		3
	This explains the quantisation of angular momentum of the	1/2	3
33	orbiting electron.		
	Naming the diode Labelled circuit diagram Working 1 mark V-I characteristics 1/2 mark		
	Zener diode	1/2	
	R_s		
	Unregulated voltage (V_l) I_L $Load voltage (V_l)$ $Regulated voltage (V_l)$	1	

Page **11** of **18**

	If the input voltage increases, the current through R_s and Zener diode also increases. This increases the voltage drop across R_s without any change in the voltage across the Zener diode. This is because in the breakdown region, Zener voltage remains constant even though the current through the Zener diode changes.	1	
	Reverse bias V	1/2	3
34			
	a) Stating the reason for adding impurity atoms b) Naming the two processes 1 mark Explaining the two processes 1 mark Creation of potential barrier 1/2 mark		
	a) To increase the electrical conductivity / to increase the number density of charge carriers	1/2	
	b) Diffusion and Drift	1/2 + 1/2	
	Explanation Diffusion: During the formation of p-n junction, due to the concentration gradient across the p and n sides, the motion of majority charge carriers give rise to diffusion current.	1/2	
	Drift: Due to the electric field developed at the junction, the motion of the minority charge carriers due to electric field is called drift.	1/2	
	With the passage of time, diffusion current decreases whereas drift current increases and balance each other. This, creates a potential barrier.	1/2	3

	$x = \frac{2}{3} m$	1/2	
	3 "		5
	OR		
	a) Derivation of expression for energy stored 2½ marks Form of energy stored ½ mark b) formula 1 mark calculation ½ mark result ½ mark		
	a) Work done in adding a charge $dq = dW$ $= Vdq$ q	1/2	
	$= \frac{q}{c} dq$ ∴Total Amount of work(W) in charging a capacitor	1/2	
	$W = \int dW = \frac{1}{C} \int_0^Q q dq$	1/2	
	$W = \frac{Q^2}{2C}$	1/2	
	$=\frac{(CV)^2}{2C}=\frac{1}{2}CV^2$	1/2	
	The electrostatic Energy/ potential energy is stored in the electric field between the plates. b) $C = 1\mu F = 1 \times 10^{-6} F$; $V = 10 \ volt$	1/2	
	$Q = CV$ $= 1 \times 10^{-6} \times 10$ $= 10^{-5} coulomb$	1 1/2 1/2	5
36	a) Diagram showing direction Derivation of expression Definition of 1 ampere b) Magnetic fields of the wires Net magnetic field and its direction 1 ½ mark 1 mark ½ mark 1 mark	1/2	
			<u> </u>

Page **14** of **18**

$B_1 = \frac{\mu_o I_1}{2\pi d}$	1/2	
$\vec{F} = I(\vec{l} \times \vec{B})$		
$F_{21} = I_2 l_2 B_1 sin 90^o$		
$=I_2l_2\frac{\mu_o l_1}{2\pi d}$ Force per unit length	1/2	
Force per unit length $f_{21} = \frac{F_{21}}{l_2} = \frac{\mu_o I_1 I_2}{2\pi d}$	1/2	
<u>Definition of 1 ampere</u> – One ampere is defied as that steady current which, when maintained in each of the two very long, straight parallel conductors of negligible cross section, and placed at a distance 1 meter apart in vacuum, will produce on each of the conductors a force equal to $2 \times 10^{-7} N$ per metre of length.	1	
Alternatively, $I_1 = I_2 = IA$, $d = 1m$, $\frac{F}{l} = 2 \times 10^{-7} N/m$		
b)		
3A 3A 3A		
$\vec{B} = \overrightarrow{B_1} + \overrightarrow{B_2}$	1/2	
$B = \frac{\mu_o I_1}{2\pi r_1} + \frac{\mu_o I_2}{2\pi r_2}$		
$=\frac{\mu_o}{2\pi} \left(\frac{3}{6 \times 10^{-2}} + \frac{3}{6 \times 10^{-2}} \right)$		
$=\frac{4\pi\times10^{-7}\times3}{\pi\times6\times10^{-2}}$		
$= 2 \times 10^{-5} tesla$ Direction of \vec{B} at midpoint is perpendicular to the plane containing the two conductors and pointing downwards. (Note: give full credit of this direction if student takes direction opposite to the shown in fig and answer accordingly)	1 1/2	5

explaining the shape of the path b) formula calculation 2 r 1/2 r 1/2 r	nark narks nark nark nark	1
b) formula calculation result Magnetic field out of the paper Charged particle Deflection plate Charged particle Described out of the paper Charged particle Described out of the paper Charged particle Deflection plate Charged particle Described out of the paper Charged particle Deflection plate Charged particle Described out of the particle Deflection plate Charged particle Described out of the paper Described out of the particle Described out of the particle Described out of the paper Described out of the particle Described out of the paper Described out of the particle Described out of the paper Describ	nark nark nark	I
Inside the dee, the magnetic field makes the charged partimove in semi-circular path. Electric field between the dees accelerates the charged partimotion of the particle. Each time, the acceleration increases the energy of the particle. As the energy increases, radius of circular path increases. So, the path is spiral.	nark nark	I
Inside the dee, the magnetic field makes the charged partimove in semi-circular path. Electric field between the dees accelerates the charged partimotion of the particle. Each time, the acceleration increases the energy of the particle. As the energy increases, radius of circular path increases. So, the path is spiral.	nark	I
Inside the dee, the magnetic field makes the charged partimove in semi-circular path. Electric field between the dees accelerates the charged partimotion of the particle. Each time, the acceleration increases the energy of the particle. As the energy increases, radius of circular path increases. So, the path is spiral.		I
Inside the dee, the magnetic field makes the charged partimove in semi-circular path. Electric field between the dees accelerates the charged partimotion of the particle. Each time, the acceleration increases the energy of the particle. As the energy increases, radius of circular path increases. So, the path is spiral.	1	l
Inside the dee, the magnetic field makes the charged partimove in semi-circular path. Electric field between the dees accelerates the charged partimotion of Electric field is changed in tune with the circumotion of the particle. Each time, the acceleration increases the energy of the particle action, the acceleration increases the energy increases. So, the path is spiral.	1	l
move in semi-circular path. Electric field between the dees accelerates the charged particle sign of Electric field is changed in tune with the circumotion of the particle. Each time, the acceleration increases the energy of the particle action increases, radius of circular path increases. So, the path is spiral.		
The sign of Electric field is changed in tune with the circumotion of the particle. Each time, the acceleration increases the energy of the particle As the energy increases, radius of circular path increases. So, the path is spiral.	cle to ½	⁄2
motion of the particle. Each time, the acceleration increases the energy of the particle. As the energy increases, radius of circular path increases. So, the path is spiral.		⁄2
b)	1,	⁄2
	1,	⁄2
Ĺa	1,	⁄2
$R_1 = \frac{2V}{i_g} - G = R_o - G$		
$R_1 + G = 2R_o$ $\left[Where \ R_o = rac{V}{i_g} ight]$	1,	2
Similarily		
$R_2 + G = R_o$ $R_3 + G = R_o/2$	1	⁄2
From the above equations,	1,	
$R_1 - R_2 = 2(R_2 - R_3)$ $R_1 - 3R_2 + 2R_3 = 0$	1,	

a) Meaning of plane polarised light	1 mark	
Diagram	½ mark	
Derivation of the relationship between μ and θ	1 ½ marks	
b) Each graph	1+1 marks	
a) A light whose electric vector direction does not c time is a plane polarised light. Alternatively, if electric vector is confined to one pa containing direction of propagation it is referred to polarized light.	articular plane,	1
Incident Reflected AIR Refracted MEDIUM		1/2
$\mu = \frac{\sin i}{\sin r}$		1/2
$=\frac{\sin\theta}{\sin\left(\frac{\pi}{2}-\theta\right)}= if\ i=\theta$		1/2
$=\frac{\sin\theta}{\cos\theta}=\tan\theta$		1/2
b) (i) (ii) I_0		1+1
[Note: also accept if a student plots (ii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plots (iii) graph as fold to be a student plot (iii) graph as fold to be a student plot (iii) graph as fold to be a student plot (iii) graph as fold to be a student plot (iii) graph as fold to be a student plot (iii) graph as fold to be a student plot (iii) graph as fold to be a student plot (iii) graph as fold (iiii) graph as fold (iii)	llows]	

OR		
a) description of experiment with diagram	1 mark	
derivation of the expression for fringe width	2 marks	
b) finding the wavelength of refracted light	1 mark	
finding the speed of refracted light	1 mark	
a)		
$\begin{array}{c} \vdots \\ D \\ \end{array} \xrightarrow{X} Z \xrightarrow{X} Z$		1/2
S is a monochromatic source of light. S ₁ and S ₂ are two separated by a distance d. GG' is the screen placed at the D from the pinholes. P is a general point on the screen. Derivation	-	1/2
$(S_2P)^2 - (S_1P)^2 = \left[D^2 + \left(x + \frac{d}{2}\right)^2\right] - \left[D^2 + \left(x - \frac{d}{2}\right)^2\right] - \left[D^2 + \left(x $	J	1/2
$path \ difference = S_2P - S_1P = \frac{2xd}{S_2P + S_1P}$ $Path \ difference = \frac{xd}{D}$	$\approx \frac{2xd}{2D}$	1/2
For maxima D		
$\frac{xd}{D} = n\lambda, \qquad n = 0,1,2 \dots$ $or x_n = \frac{n\lambda D}{d}$		1/2
$x_{n+1} = \frac{(n+1)\lambda D}{d}$ $\beta = x_{n+1} - x_n$ $\beta = \frac{\lambda D}{d}$		
$p = x_{n+1} - x_n$		1/2

$$x_{n+1} = \frac{(n+1)\lambda D}{d}$$

$$\beta = x_{n+1} - x_n$$

$$\beta = \frac{\lambda D}{d}$$
b)
$$\mu_w = \frac{c_0}{c_w} = \frac{v\lambda_0}{v\lambda_w} = \frac{\lambda_0}{\lambda_w}$$

$$\lambda_w = \frac{\lambda_0}{\mu_w} = \frac{588 \times 3}{4} = 441 \text{ nm}$$

$$c_w = \frac{c_0}{\mu_w} = \frac{3 \times 10^8 \times 3}{4} = 2.25 \times 10^8 \text{ m/s}$$