Strictly Confidential: (For Internal and Restricted use only) Senior School Certificate Examination-2020 Marking Scheme – PHYSICS THEORY (042)

(55/3/2)

General Instructions: -

- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.
- 2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
- 3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluators will mark(√) wherever answer is correct. For wrong answer 'X"be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- 6. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
- 11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong totaling of marks awarded on a reply.
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.

- Marks in words and figures not tallying.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- 12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
- 13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- 15. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- 16. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

	MARKING SCHEME: PHYSICS					
0.37	QUESTION PAPER CODE: 55/3/2					
Q.No.	Value Points/Expected Answer	Marks	Total Marks			
	SECTION A		1,1001110			
1	(C)	1	1			
	Zero					
2	D	1	1			
3	-F (B)	1	1			
3	(B)	1	1			
	Q					
	$\frac{Q}{\epsilon_o}$					
4	(A)	1	1			
	V					
	$\frac{V}{2}$					
5	(D)	1	1			
	Helix					
6	(D)	1	1			
	$1: n^2$					
7	(C)	1	1			
	heavily doped n-side as well as p-side					
8	(D)	1	1			
	1					
	$\left \frac{1}{n^2} \right $					
9	(B)	1	1			
9	(B)	1	1			
	Mobility					
10	(A)	1	1			
	1					
	$\frac{1}{\epsilon_o}$					
11	White	1	1			
12	Intensity	1	1			
	OR					
	$h(v-v_o)$					
13	Zero	1	1			
14 15	Divergent lens/ Concave lens	1 1	1			
	$\sqrt{3}$		1			
16	Inductor	1	1			

17	Z = R Impedance = Resistance	1	1
18	J.C. Bose observed / produced electromagnetic waves of short wavelength / did very significant work in the production of em waves.	1	1
19	Zero Or	1	1
	Eddy currents are produced in metal block / block gets heated		
20	Frequency	1	1
21	SECTION B		
	Formulae ½ + ½ mark		
	Calculation of R ½ mark		
	Calculation of terminal voltage ½ mark		
	F	1/2	
	$I = \frac{E}{R+r}$	72	
	$0.5 = \frac{12}{R+4}$		
	$R = 20\Omega$ $V = E - Ir \text{ or V=IR}$	1/2 1/2	
	$V = E - II \text{ of } V - IR$ $V = 12 - 0.5 \times 4 = 10 \text{ volt}$	1/2	2
22	Determining power of the combination 1 ½ mark		
	Nature of combination ½ mark		
	$\frac{1}{f} = \frac{1}{f_1} - \frac{1}{f_2}$ $\frac{1}{f} = \frac{f_2 - f_1}{f_1 f_2}$	1/2	
	$f = f_1 f_2$	1/2	
	$\therefore P = \frac{f_2 - f_1}{f_1 f_2}$	1/2	
	Because $f_2 < f_1$: P is negative	1/2	2
	∴ nature is diverging lens	72	2
	OR		
	Writing the formula 1 mark (a) effect of wavelength on Resolving power ½ mark		
	(b) effect of diameter of lens on Resolving power ½ mark		
	Resolving power of compound microscope is	1	
L	ı		

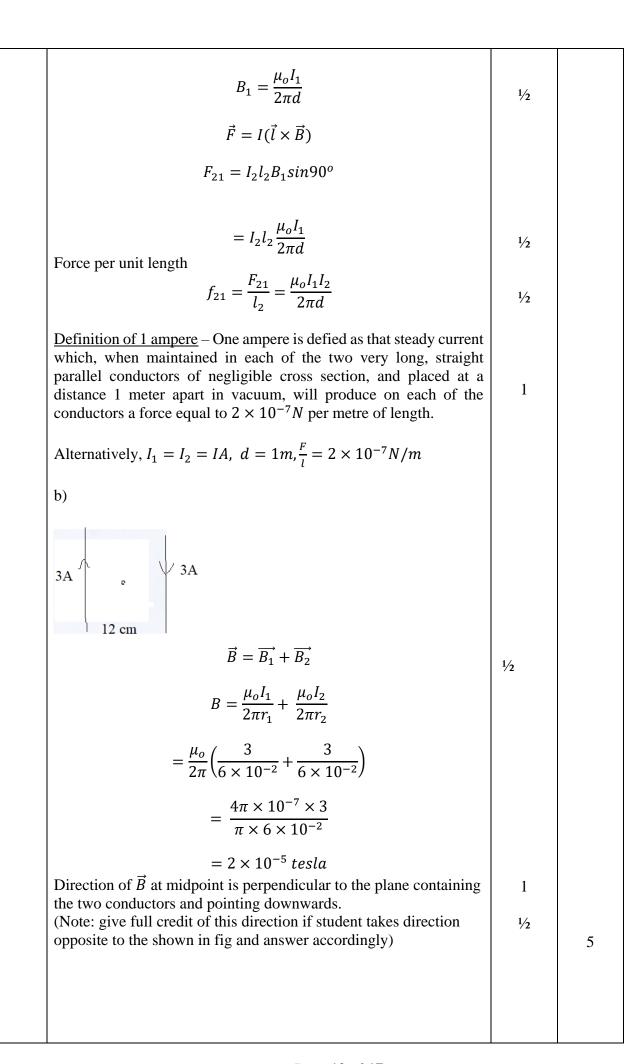
	Resolving Power = $\frac{2\mu \sin\theta}{1.22\lambda}$		
	Justification of the following is based on the above formula: a) If λ decreases, Resolving Power increases. b) If diameter of objective lens is increased, $sin\theta$ increases, Resolving Power increases	1/2 1/2	2
23	a) Finding the change in inductance of solenoid 1 mark b) Finding the final energy stored in the inductor 1 mark		
	a) $L = \mu_0 \mu_r n^2 A l$ or alternatively, $L \propto n^2$ so, L becomes 4 times $b) \text{ Energy stored} == \frac{1}{2} L I^2$	1/2	
	As L increases 4 times, energy also increases 4 times.	1/ ₂ 1/ ₂	2
24	a) Stating the number of spectral lines ½ mark Showing the transitions in energy level diagram 1 mark b) Stating the transition for the shortest wave length emission ½ mark		
	a) number of spectral lines =6 energy level diagram	1/2	
	n=3 $n=2$ $n=1$	1	
	b) n=4 to n=1	1/2	2
25	Modification in magnetic field pattern by paramagnetic material 1 mark Modification in magnetic field pattern by diamagnetic material 1 mark		
	(a) (b) diamagnetic paramagnetic	1+1	2

Page **5** of **17**

2.5			
26	Formula 1 mark		
	Proving that the kinetic energy of electron is greater that of		
	proton 1 mark		
	h h		
	$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE_k}}$	1/2+1/2	
	where E_k = kinetic energy		
	for equal λ		
	$E_k \propto \frac{1}{mass}$		
	mass of electron <mass electron="" energy="" is="" kinetic="" more="" of="" proton="" proton<="" td="" than="" ∴kinetic=""><td>1/2</td><td>2</td></mass>	1/2	2
	Withield Energy of election is more than kinetic energy of proton	1/2	
27			
	Radiation of electromagnetic wave by an oscillating charge		
	1 mark		
	Relation between the frequency of radiated wave and the		
	frequency of oscillating charge 1 mark		
	An oscillating charge produces an oscillating electric field in space,		
	which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field, and so on. The oscillating electric		
	and magnetic fields thus regenerate each other, as the wave	1	
	propagates through the space.		
	The frequency of the electromagnetic wave equals the frequency of	1	2
	oscillation of the charge.		
	OR		
	a) Explaining the fact that e.m waves carry energy		
	1 mark		
	b) Correct Explanation 1 mark		
	a) Consider a plane perpendicular to the direction of propagation of		
	the electromagnetic wave. If there are, on this plane, electric charges, they will be set and sustained in motion by the electric and	1	
	magnetic fields of the electromagnetic wave. The charges thus	1	
	acquire energy and momentum from the waves.		
	b) When the sun shines on your hand, you feel the energy being		
	absorbed from the electromagnetic waves (your hands get warm).	1	2
	Electromagnetic waves also transfer momentum to your hand but		

[For any other alternative correct explanation also, award full 2		
<u> </u>		
a) Relationship between Mobility and drift velocity 1 mark		
b) Formula 1 mark		
Finding the ratio 1 mark		
a) V_d		
$\mu = \frac{a}{E}$ (Alternatively, if a student writes that mobility μ is defined as drift velocity per unit electric field award full marks)	1	
b) $V_d = \frac{e\tau E}{m} = \frac{e\tau V}{ml}$	1	3
$\frac{V_{d1}}{V_{d2}} = \frac{l_2}{l_1} = \frac{3}{2}$	1	
a) Stating the reason for adding impurity atoms b) Naming the two processes 1 mark Explaining the two processes 1 mark Creation of potential barrier 1/2 mark		
a) To increase the electrical conductivity / to increase the number density of charge carriers	1/2	
b) Diffusion and Drift	1/2 + 1/2	
Explanation Diffusion: During the formation of p-n junction, due to the concentration gradient across the p and n sides, the motion of majority charge carriers give rise to diffusion current.	1/2	
Drift: Due to the electric field developed at the junction, the motion of the minority charge carriers due to electric field is called drift.	1/2	
With the passage of time, diffusion current decreases whereas drift current increases and balance each other. This, creates a potential barrier.	1/2	3
	b) Formula 1 mark Finding the ratio 1 mark $\mu = \frac{V_d}{E}$ (Alternatively, if a student writes that mobility μ is defined as drift velocity per unit electric field award full marks) b) $V_d = \frac{e\tau E}{m} = \frac{e\tau V}{ml}$ $\frac{V_{d1}}{V_{d2}} = \frac{l_2}{l_1} = \frac{3}{2}$ a) Stating the reason for adding impurity atoms b) Naming the two processes 1 mark Explaining the two processes 1 mark Creation of potential barrier $\frac{1}{2}$ mark $\frac{1}{2}$ mark $\frac{1}{2}$ mark $\frac{1}{2}$ or increase the electrical conductivity $\frac{1}{2}$ to increase the number density of charge carriers $\frac{1}{2}$ b) Diffusion and Drift Explanation Diffusion: During the formation of p-n junction, due to the concentration gradient across the p and n sides, the motion of majority charge carriers give rise to diffusion current. Drift: Due to the electric field developed at the junction, the motion of the minority charge carriers due to electric field is called drift. With the passage of time, diffusion current decreases whereas drift current increases and balance each other. This, creates a potential	SECTION C a) Relationship between Mobility and drift velocity 1 mark b) Formula 1 mark Finding the ratio 1 mark a) $\mu = \frac{V_d}{E}$ (Alternatively, if a student writes that mobility μ is defined as drift velocity per unit electric field award full marks) b) $V_d = \frac{e\tau E}{m} = \frac{e\tau V}{ml}$ 1 $\frac{V_{d1}}{V_{d2}} = \frac{l_2}{l_1} = \frac{3}{2}$ 1 a) Stating the reason for adding impurity atoms $\frac{V_2}{V_2}$ mark b) Naming the two processes 1 mark Explaining the two processes 1 mark Creation of potential barrier $\frac{V_2}{V_2}$ mark a) To increase the electrical conductivity / to increase the number density of charge carriers b) Diffusion and Drift $\frac{V_2}{V_2} + \frac{V_2}{V_2}$ Explanation Diffusion: During the formation of p-n junction, due to the concentration gradient across the p and n sides, the motion of majority charge carriers give rise to diffusion current. Drift: Due to the electric field developed at the junction, the motion of the minority charge carriers due to electric field is called drift. With the passage of time, diffusion current decreases whereas drift current increases and balance each other. This, creates a potential

30		
a) Explaining the high nuclear density 1 mark b) Explaining the non-Colombian nature 1 mark c) Drawing the graph 1 mark		
a) Volume of Nucleus is very small but its mass is almost the total mass of the atom		
$Now \ density = rac{Mass}{Volume}$		
That is why density of nucleus is very high. Alternatively , the matter consisting of atoms, has a very large amount of empty space.	1	
b) Nuclear forces are very strong, attractive and independent of charge and are short ranged. Whereas Colombian Force are charge dependent and long range. (Accept any one point of difference)	1	
Potential cherry (Mc)	1	3
Meaning of Matter Waves 1 mark		
Finding the ratio of de Broglie wavelengths associated with proton and alpha particle, when both:-		
(a) accelerated through same potential difference 1 mark		
(b) have same velocity 1 mark		
The de Broglie waves associated with moving particles are called matter waves. a) (i)	1	
$\lambda = \frac{h}{\sqrt{2mE_k}}$	1/2	
$\lambda_{\alpha} = \frac{h}{\sqrt{2m_{\alpha}q_{\alpha}V}}$		
$\lambda_p = rac{h}{\sqrt{2m_pq_pV}}$		
$rac{\lambda_p}{\lambda_lpha} = \sqrt{rac{m_lpha q_lpha}{m_p q_p}} = \sqrt{rac{4m_p 2q_p}{m_p q_p}}$ $= rac{2\sqrt{2}}{1}$	1/2	
b) 1		


	$\lambda = \frac{h}{mv}$	1/2	
	$\lambda_p = \frac{h}{m_p v}$ & $\lambda_\alpha = \frac{h}{m_\alpha v}$		
	$rac{\lambda_p}{\lambda_lpha} = rac{m_lpha}{m_p} = rac{4}{1}$	1/2	3
32	a) Ray diagram for concave mirror 1/2 mark derivation of mirror formula 2 marks b) Correct explanation 1/2 mark a) Ray diagrams for concave mirror		
	B C F N	1/2	
	Derivation of Mirror Formula		
	From the diagram, $\Delta A'B'F \& \Delta MPF$ are similar		
	$\therefore \frac{B'A'}{PM} = \frac{B'F}{FP}$		
	$\frac{B'A'}{BA} = \frac{B'F}{FP} \ (\because PM = AB) eq1$	1/2	
	Since $\angle APB = \angle A'PB'$		
	$\Delta A'B'P \& \Delta ABP$ are also similar		
	$\frac{B'A'}{BA} = \frac{B'P}{BP} eq \ 2$	1/2	
	Comparing eq. 1 and eq. 2		
	$\frac{B'P}{BP} = \frac{B'P - FP}{FP}$		
L	1	İ	<u> </u>

As per the sign convention $B'P = -\nu$, $FP = -f$, $BP = -u$		
$\frac{-v+f}{-f} = \frac{-v}{-u} = \frac{v}{u}$ $-vu + uf = -vf$		
Dividing by uvf $\Rightarrow \frac{1}{v} + \frac{1}{u} = \frac{1}{f}$	1	3
b) Magnification is different for different object distances	1/2	
Labelled circuit diagram 1½ mark		
Explanation 1½ mark		
Centre-Tap Transformer Diode 1(D ₁) Centre A Tap Diode 2(D ₂) R _L Output	1½	
Explanation During positive half of the AC input, diode D ₁ gets forward biased and conducts and diode D ₂ gets reverse biased.	1/2	
During negative half of the AC input, diode D ₂ gets forward biased and conducts; and diode D ₁ gets reverse biased.	1/2	
So, output is obtained during both positive and negative half of the cycle in the same direction.	1/2	3
a) writing the formula for resonant angular frequency		
1/2 mark		
calculating this angular frequency 1 mark		
b) writing the formula for Q value ½ mark		
calculating Q value 1 mark		
$\omega_o = \frac{1}{\sqrt{LC}}$	1/2	
$= \frac{1}{\sqrt{2 \times 32 \times 10^{-6}}}$	1/2	
=125 rad/s	1/2	

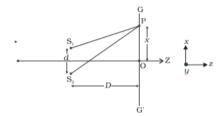
Page **10** of **17**

	b)		
	$Q = \frac{1}{R} \sqrt{\frac{L}{C}} or Q = \frac{L\omega}{R}$	1/2	
	$Q = \frac{1}{10} \sqrt{\frac{2}{32 \times 10^{-6}}} = 25$ Alternatively $Q = \frac{2 \times 125}{10} = 25$ OR	1	3
	a) Calculating rms value of current 1 mark		
	calculating peak value of current 1 mark		
	b) Phase difference between current through inductor and applied voltage 1/2 mark		
	change in phase difference ½ mark		
	a)		
	$X_{L} = \omega L = 2\pi \nu L$ $\therefore X_{L} = 2\pi \times 50 \times \frac{5}{\pi} = 500 \Omega$ $I_{rms} = \frac{200}{500} = \frac{2}{5} = 0.4A$	1/2	
	$I_0 = \sqrt{2} I_{rms}$	1/2	
	$= \sqrt{2} \times 0.4$ $= 0.56 A$	1/2	
	[Even if student expresses the answer as $(0.4\sqrt{2})A$ give the last $\frac{1}{2}$ marks]	1/2	
	b) $\frac{\pi}{2} \text{ or } 90^{0}$ decreases	1/2 1/2	3
	SECTION D	1	
35	a) Diagram showing direction Derivation of expression Definition of 1 ampere b) Magnetic fields of the wires Net magnetic field and its direction 1/2 mark 1/2 mark 1/2 mark		
	a)		
	\mathbf{F}_{ba} \mathbf{B}_{a}	1/2	
		<u> </u>	

Page **11** of **17**

a) Diagram explaining the shape of the path b) formula 1/2 marks b) formula 1/2 mark calculation 1 mark result 1/2 mark	OR	
b) formula calculation result V2 mark 1 mark 1 mark 1 mark 1/2 ma		
a) Magnetic field out 1/2 mark Inside the dee, the magnetic field makes the charged particle to move in semi-circular path. Electric field between the dees accelerates the charged particle. The sign of Electric field is changed in tune with the circular motion of the particle. Each time, the acceleration increases the energy of the particle. As the energy increases, radius of circular path increases. So, the path is spiral. $R = \frac{v}{i_g} - G$ $R_1 = \frac{2V}{i_g} - G = R_o - G$ $R_1 + G = 2R_o$ $[Where R_o = \frac{v}{i_g}] Similarily R_2 + G = R_o R_3 + G = R_o/2$		
a) Magnetic field out Deflection plate Linside the dee, the magnetic field makes the charged particle to move in semi-circular path. Electric field between the dees accelerates the charged particle. The sign of Electric field is changed in tune with the circular motion of the particle. Each time, the acceleration increases the energy of the particle. As the energy increases, radius of circular path increases. So, the path is spiral. b) $R = \frac{v}{i_g} - G$ $R_1 = \frac{2V}{i_g} - G = R_o - G$ $R_1 + G = 2R_o$ $[Where R_o = \frac{v}{i_g}] Similarily R_2 + G = R_o R_3 + G = R_o/2$		
Inside the dee, the magnetic field makes the charged particle to move in semi-circular path. Electric field between the dees accelerates the charged particle. The sign of Electric field is changed in tune with the circular motion of the particle. Each time, the acceleration increases the energy of the particle. As the energy increases, radius of circular path increases. So, the path is spiral. $R = \frac{v}{i_g} - G$ $R_1 = \frac{2V}{i_g} - G = R_o - G$ $R_1 + G = 2R_o$ $Where R_o = \frac{v}{i_g} Similarily R_2 + G = R_o R_3 + G = R_o/2$		
Inside the dee, the magnetic field makes the charged particle to move in semi-circular path. Electric field between the dees accelerates the charged particle. The sign of Electric field is changed in tune with the circular motion of the particle. Each time, the acceleration increases the energy of the particle. As the energy increases, radius of circular path increases. So, the path is spiral. $R = \frac{V}{i_g} - G$ $R_1 = \frac{2V}{i_g} - G = R_o - G$ $R_1 + G = 2R_o$ $Where R_o = \frac{V}{i_g} Similarly R_2 + G = R_o R_3 + G = R_o/2$	of the paper Exit Port Charged particle	1
The sign of Electric field is changed in tune with the circular motion of the particle. Each time, the acceleration increases the energy of the particle. As the energy increases, radius of circular path increases. So, the path is spiral. $R = \frac{v}{i_g} - G$ $R_1 = \frac{2V}{i_g} - G = R_o - G$ $R_1 + G = 2R_o$ $\left[Where \ R_o = \frac{v}{i_g}\right]$ Similarily $R_2 + G = R_o$ $R_3 + G = R_o/2$	lee, the magnetic field makes the charged particle to mi-circular path.	
Each time, the acceleration increases the energy of the particle. As the energy increases, radius of circular path increases. So, the path is spiral. $R = \frac{v}{i_g} - G$ $R_1 = \frac{2V}{i_g} - G = R_o - G$ $R_1 + G = 2R_o$ $\left[Where \ R_o = \frac{v}{i_g}\right]$ Similarily $R_2 + G = R_o$ $R_3 + G = R_o/2$. 1/2
b) $R=\frac{v}{i_g}-G$ $R_1=\frac{2V}{i_g}-G=R_o-G$ $R_1+G=2R_o$ $\left[Where \ R_o=\frac{v}{i_g}\right]$ Similarly $R_2+G=R_o$ $R_3+G=R_o/2$	the acceleration increases the energy of the particle. rgy increases, radius of circular path increases.	
$R=\frac{v}{i_g}-G$ $R_1=\frac{2V}{i_g}-G=R_o-G$ $R_1+G=2R_o$ $\left[Where\ R_o=\frac{v}{i_g}\right]$ Similarily $R_2+G=R_o$ $R_3+G=R_o/2$	ı is spiral.	1/2
$R_1 + G = 2R_o$ $\left[Where \ R_o = \frac{v}{i_g}\right]$ Similarily $R_2 + G = R_o$ $R_3 + G = R_o/2$		1/2
Similarly $R_2 + G = R_o$ $R_3 + G = R_o/2$	$R_1 + G = 2R_0$	1/2
$R_2 + G = R_o$ $R_3 + G = R_o/2$	i vgi	
From the above equations,	$R_3 + G = R_o/2$	1/2
$R_1 - R_2 = 2(R_2 - R_3)$ $R_1 - 3R_2 + 2R_3 = 0$	$R_1 - R_2 = 2(R_2 - R_3)$	

a) Meaning of plane polarised light	1 mark	
Diagram	½ mark	
Derivation of the relationship between μ and θ	1 ½ marks	
b) Each graph	1+1 marks	
a) A light whose electric vector direction does not time is a plane polarised light. Alternatively, if electric vector is confined to one propagation it is referred to polarized light.	particular plane,	1
Incident Reflected AIR Refracted MEDIUM		1/2
$\mu = \frac{\sin i}{\sin r}$		1/2
$=\frac{\sin\theta}{\sin\left(\frac{\pi}{2}-\theta\right)} = if \ i = \theta$		1/2
$=\frac{\sin\theta}{\cos\theta}=\tan\theta$		1/2
b) (i) (ii) $I_{1} = \frac{I_{2}}{I_{0}} = \frac{I_{2}}$		1+1
[Note: also accept if a student plots (ii) graph as for $\frac{T_2}{2}$	ollows]	


a) description of experiment with diagramderivation of the expression for fringe width2 marks

OR

b) finding the wavelength of refracted light 1 mark

finding the speed of refracted light 1 mark

a)

1/2

1/2

5

S is a monochromatic source of light. S_1 and S_2 are two pinholes separated by a distance d. GG' is the screen placed at the distance D from the pinholes.

P is a general point on the screen.

Derivation

$$(S_2P)^2 - (S_1P)^2 = \left[D^2 + \left(x + \frac{d}{2}\right)^2\right] - \left[D^2 + \left(x - \frac{d}{2}\right)^2\right]$$

$$= D^2 + x^2 + \frac{d^2}{4} + xd - D^2 - x^2 - \frac{d^2}{4} + xd$$

$$= 2xd$$

$$path \ difference = S_2P - S_1P = \frac{2xd}{S_2P + S_1P} \approx \frac{2xd}{2D}$$

$$Path \ difference = \frac{xd}{D}$$

For maxima

$$\frac{xd}{D} = n\lambda, \qquad n = 0,1,2 \dots$$

$$or \quad x_n = \frac{n\lambda D}{d}$$

$$x_{n+1} = \frac{(n+1)\lambda D}{d}$$

$$\beta = x_{n+1} - x_n$$

$$\beta = \frac{\lambda D}{d}$$
1/2

b)
$$\mu_{w} = \frac{c_{0}}{c_{w}} = \frac{v\lambda_{0}}{v\lambda_{w}} = \frac{\lambda_{0}}{\lambda_{w}}$$

$$\lambda_{w} = \frac{\lambda_{0}}{\mu_{w}} = \frac{588 \times 3}{4} = 441 \text{ nm}$$

$$c_{w} = \frac{c_{0}}{\mu_{w}} = \frac{3 \times 10^{8} \times 3}{4} = 2.25 \times 10^{8} \text{ m/s}$$

$$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = $

a) Diagram	½ mark		
Derivation Orientation for maximum a	1 ½ mark		
torque	$\frac{1}{2} + \frac{1}{2}$ mark		
b) Formula	½ mark		
Calculation	1 mark		
Result	½ mark		
a)			
E a p	q E q	1/2	
From diagram Magnitude of Torque (SE)(2)	oim()	1/2	
Magnitude of Torque= $(qE)(2a)$ = $(2aa)$	sinθ))(E sinθ)	4.7	
	Esinθ	1/2	
For direction			
$ec{ au} =$	$ec{p} imesec{E}$	1/2	
the direction of electric field	should be placed perpendicular to $00^0 = \frac{\pi}{2}$	1/2	
	_		
ii) For the torque to be half the m	naximum, π		
$\theta = 3$	$80^0 = \frac{\pi}{6}$	1/2	
(b)	Ü		
K × - ★ A . P K — 2m	(2-x) / S		
$E_{PA}=E_{PB}$	$; E = \frac{kq}{r^2}$		
$\frac{kq_A}{x^2} =$	$\frac{kq_B}{(2-x)^2}$	1/2	
$\frac{1}{x^2} = \frac{1}{x^2}$	$\frac{4}{(2-x)^2}$	1/2	
$\frac{1}{x}$	$\frac{2}{2-x}$	1/2	
x =	$=\frac{2}{3}m$	1/2	5

OR			
a) Derivation of expression for energy		7	
Form of energy stored	½ mark		
b) formula	1 mark		
calculation	½ mark		
result	½ mark		
	1		
a) Work done in adding a charge dq =			
	= Vdq	1/2	
=	$=\frac{q}{2}dq$	1/2	
∴Total Amount of work(W)in charging	\boldsymbol{c}		
$W=\int dW=\frac{1}{C}$	$\int_0^Q q dq$	1/2	
$W = \frac{Q^2}{2C}$			
$W = \frac{1}{2C}$		1/2	
(grp?		72	
$=\frac{(CV)^2}{2C}=\frac{1}{2}$	CV^2	1/2	
20 2			
The electrostatic Energy/ potential energy	rgy is stored in the electric	1/2	
field between the plates. $C = 1 \text{ i.e. } 1 \text{ v. } 10^{-6} \text{ Fe}$ $V = 10$	anal+	, _	
b) $C = 1\mu F = 1 \times 10^{-6} F$; $V = 10$	νοιτ		
Q = CV	40-6	1	
$= 1 \times$	$10^{-6} \times 10$	1/2	
	⁵ coulomb		