Strictly Confidential: (For Internal and Restricted use only) Senior School Certificate Examination-2020
 Marking Scheme - PHYSICS THEORY (042)

(55/3/3)

General Instructions: -

1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.
2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
4. Evaluators will mark $(\sqrt{ })$ wherever answer is correct. For wrong answer ' X "be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
6. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
9. A full scale of marks $0-70$ has to be used. Please do not hesitate to award full marks if the answer deserves it.
10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on a reply.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
15. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
16. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

MARKING SCHEME: PHYSICS			
QUESTION PAPER CODE: 55/3/3			
Q.No.	Value Points/Expected Answer	Marks	Total Marks
SECTION A			
1	(D) Zero	1	1
2	(C) heavily doped n -side as well as p -side	1	1
3	(B) Charge distribution on the sphere is not uniform	1	1
4	(C) $\frac{F}{2}$	1	1
5	(D) $\frac{1}{n^{2}}$	1	1
6	(C) 4Ω	1	1
7	(D) helix	1	1
8	$\begin{aligned} & \text { (D) } \\ & -\mathrm{F} \end{aligned}$	1	1
9	$\begin{aligned} & \text { (A) } \\ & \frac{1}{\epsilon_{o}} \end{aligned}$	1	1
10	(B) Mobility	1	1
11	Spherical	1	1
12	Intensity OR $h\left(v-v_{o}\right)$	1	1
13	Decrease	1	1
14	Divergent lens/ Concave lens	1	1
15	$\sqrt{3}$	1	1
16	1	1	1
17	Plane of the coil is parallel to the magnetic field / Area vector is perpendicular to the magnetic field	1	1

\begin{tabular}{|c|c|c|c|}
\hline 18 \& J.C Bose observed / produced electromagnetic waves of short wavelength /did very significant job in the production of em waves \& 1 \& 1 \\
\hline 19 \& \begin{tabular}{l}
Zero \\
Eddy currents are produced in metal block / block gets heated
\end{tabular} \& 1 \& 1 \\
\hline 20 \& Ultraviolet radiation- 400 nm to 1 nm \& 1/2+1/2 \& 1 \\
\hline \& SECTION B \& \& \\
\hline 21 \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Identification of Maximum relaxation time \& 1 mark \\
Identification of Minimum relaxation time \& 1 mark \\
\hline
\end{tabular} \\
a)
\[
\sigma=\frac{n e^{2} \tau}{m}
\] \\
where \(\tau\) is relaxation time \\
Alternatively,
\[
\begin{gathered}
\tau \propto \frac{\sigma}{n} \\
\tau_{x} \propto \frac{2}{4}=\frac{1}{2} ; \quad \tau_{y} \propto \frac{1}{1}=1 ; \quad \tau_{z} \propto \frac{2}{8}=\frac{1}{4}
\end{gathered}
\] \\
\(\tau\) is maximum for conductor Y \\
b) \\
\(\tau\) is minimum for conductor Z
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 \\
\& 1 / 2 \\
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \& 2 \\
\hline 22 \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Determining power of the combination \& \(11 / 2 \mathrm{mark}\) \\
Nature of combination \& \(1 / 2 \mathrm{mark}\) \\
\hline
\end{tabular}
\[
\begin{aligned}
\& \frac{1}{f}=\frac{1}{f_{1}}-\frac{1}{f_{2}} \\
\& \frac{1}{f}=\frac{f_{2}-f_{1}}{f_{1} f_{2}} \\
\& \therefore P=\frac{f_{2}-f_{1}}{f_{1} f_{2}}
\end{aligned}
\] \\
Because \(f_{2}<f_{1} \therefore \mathrm{P}\) is negative \\
\(\therefore\) nature is diverging lens \\
OR \\
Resolving power of compound microscope is
\[
\text { Resolving Power }=\frac{2 \mu \sin \theta}{1.22 \lambda}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

1 \& 2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field, and so on. The oscillating electric and magnetic fields thus regenerate each other, as the wave propagates through the space. \\
The frequency of the electromagnetic wave equals the frequency of oscillation of the charge. \\
OR \\
a) Consider a plane perpendicular to the direction of propagation of the electromagnetic wave. If there are, on this plane, electric charges, they will be set and sustained in motion by the electric and magnetic fields of the electromagnetic wave. The charges thus acquire energy and momentum from the waves. \\
b) When the sun shines on your hand, you feel the energy being absorbed from the electromagnetic waves (your hands get warm). Electromagnetic waves also transfer momentum to your hand but because c is very large, the amount of momentum transferred is extremely small and you do not feel the pressure. \\
[For any other alternative correct explanation also, award full 2 marks]
\end{tabular} \& 1 \& 2 \\
\hline 26 \& \begin{tabular}{l}
a) Difference between matter waves and electromagnetic waves \\
b) Finding the new de Broglie wavelength \\
a) Matter waves \\
i) Matter waves are associated with moving particle \\
ii) They travel with a speed less than the speed of light \\
iii) \(\mathbf{E}\) and \(\mathbf{B}\) are not associated with these waves. \\
Electromagnetic waves \\
i) They are produced by accelerated charged particles \\
ii) They travel with the speed of light. \\
iii) \(\mathbf{E}\) and \(\mathbf{B}\) are associated with these waves. \\
(Any one point of difference) \\
b)
\[
\lambda=\frac{h}{\sqrt{2 m E_{k}}}
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Alternatively,
\[
\begin{aligned}
\& \lambda \propto \frac{1}{\sqrt{E_{k}}} \\
\& \frac{\lambda_{2}}{\lambda_{1}}=\sqrt{\frac{E_{k 1}}{E_{k 2}}}=\sqrt{\frac{\frac{E_{K 1}}{E_{k 1}}}{4}}=\sqrt{4}=2 \\
\& \lambda_{2}=2 \lambda_{1}
\end{aligned}
\] \\
So, \(\lambda\) becomes two times.
\end{tabular} \& 1/2 \& 2 \\
\hline 27 \& \begin{tabular}{l}
Modification in magnetic field pattern by paramagnetic material \\
1 mark \\
Modification in magnetic field pattern by diamagnetic material \\
1 mark \\
(a) \\
diamagnetic \\
(b) paramagnetic
\end{tabular} \& \(1+1\) \& 2 \\
\hline \& SECTION C \& \& \\
\hline 28 \& \begin{tabular}{l}
Diagram showing the direction of current in the circuit diagram \\
Forming the three equations \\
Finding the value of I g \\
Considering the mesh BADB , we have
\[
100 \mathrm{I}_{1}+15 \mathrm{I}_{\mathrm{g}}-60 \mathrm{I}_{2}=0
\] \\
\(20 \mathrm{I}_{1}+3 \mathrm{Ig}-12 \mathrm{I}_{2}=0\) \(\qquad\) eq1 \\
Considering the mesh BCDB, we have \\
\(10\left(\mathrm{I}_{1}-\mathrm{Ig}\right)-15 \mathrm{I}_{\mathrm{g}}-5\left(\mathrm{I}_{2}+\mathrm{I}_{\mathrm{g}}\right)=0\)
\[
10 \mathrm{I}_{1}-30 \mathrm{I}_{\mathrm{g}}-5 \mathrm{I}_{2}=0
\] \\
\(2 \mathrm{I}_{1}-6 \mathrm{I}_{\mathrm{g}}-\mathrm{I}_{2}=0 \quad\)-- eq 2
\end{tabular} \& \(1 / 2\)

$1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

	Considering the mesh ADCEA, we have $60 \mathrm{I}_{2}+5\left(\mathrm{I}_{2}+\mathrm{I}_{\mathrm{g}}\right)=10$ $65 \mathrm{I}_{2}+5 \mathrm{I}_{\mathrm{g}}=0$ $13 \mathrm{I}_{2}+\mathrm{I}_{\mathrm{g}}=2$ Multiplying eq 2 by 10 $20 \mathrm{I}_{1}-60 \mathrm{I}_{\mathrm{g}}-10 \mathrm{I}_{2}=0$ From eq 4 and eq 1 , we have $63 \mathrm{I}_{\mathrm{g}}-2 \mathrm{I}_{2}=10$ $\begin{equation*} \mathrm{I}_{2}=31.5 \mathrm{I}_{\mathrm{g}} \tag{eq 5} \end{equation*}$ Substituting the value of I2 in eq 3 , we get $13\left(31.5 \mathrm{I}_{\mathrm{g}}\right)+\mathrm{I}_{\mathrm{g}}=2$ $410.5 \mathrm{I}_{\mathrm{g}}=2$ $\mathrm{I}_{\mathrm{g}}=4.87 \mathrm{~mA}$	1/2	3
29	Naming the diode $1 / 2 \mathrm{mark}$ Labelled circuit diagram 1 mark Working 1 mark V-I characteristics $1 / 2 \mathrm{mark}$ Zener diode If the input voltage increases, the current through R_{s} and Zener diode also increases. This increases the voltage drop across R_{s} without any change in the voltage across the Zener diode. This is because in the breakdown region, Zener voltage remains constant even though the current through the Zener diode changes.	1/2	3

\begin{tabular}{|c|c|c|c|}
\hline 30 \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline a) Explaining the high nuclear density \& 1 mark \\
b) Explaining the non-Colombian nature \& 1 mark \\
c) Drawing the graph \& 1 mark \\
\hline
\end{tabular} \\
a) Volume of Nucleus is very small but its mass is almost the total mass of the atom
\[
\text { Now } \text { density }=\frac{\text { Mass }}{\text { Volume }}
\] \\
That is why density of nucleus is very high. \\
Alternatively, the matter consisting of atoms, has a very large amount of empty space. \\
b) Nuclear forces are very strong, attractive and independent of charge and are short ranged. \\
Whereas Colombian Force are charge dependent and long range. (Accept any one point of difference)
\end{tabular} \& 1 \& 3 \\
\hline 31 \& \begin{tabular}{l}
\begin{tabular}{|lr|}
\hline Meaning of Matter Waves \& 1 mark \\
Finding the ratio of de Broglie wavelengths associated with \\
proton and alpha particle, when both:- \& \\
(a) accelerated through same potential difference \& 1 mark \\
(b) have same velocity \& 1 mark \\
\hline
\end{tabular} \\
The de Broglie waves associated with moving particles are called matter waves. \\
a) (i)
\[
\begin{gathered}
\lambda=\frac{h}{\sqrt{2 m E_{k}}} \\
\lambda_{\alpha}=\frac{h}{\sqrt{2 m_{\alpha} q_{\alpha} V}} \\
\lambda_{p}=\frac{h}{\sqrt{2 m_{p} q_{p} V}} \\
\frac{\lambda_{p}}{\lambda_{\alpha}}=\sqrt{\frac{m_{\alpha} q_{\alpha}}{m_{p} q_{p}}}=\sqrt{\frac{4 m_{p} 2 q_{p}}{m_{p} q_{p}}} \\
=\frac{2 \sqrt{2}}{1}
\end{gathered}
\] \\
b)
\end{tabular} \& 1
1
\(1 / 2\)

$1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{gathered}
I_{0}=\sqrt{2} I_{r m s} \\
=\sqrt{2} \times 0.4 \\
=0.56 \mathrm{~A}
\end{gathered}
\] \\
[Even if student expresses the answer as \((0.4 \sqrt{2}) A\) give the last \(1 / 2\) marks] \\
b)
\[
\frac{\pi}{2} \text { or } 90^{0}
\]
decreases
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$ \& 3

\hline 33 \& | a) Ray diagram for concave mirror derivation of mirror formula 2 marks |
| :--- |
| b) Correct explanation $1 / 2$ mark |
| a) Ray diagrams for concave mirror |
| Derivation of Mirror Formula |
| From the diagram, $\triangle A^{\prime} B^{\prime} F \& \triangle M P F$ are similar $\therefore \frac{B^{\prime} A^{\prime}}{P M}=\frac{B^{\prime} F}{F P}$ $\frac{B^{\prime} A^{\prime}}{B A}=\frac{B^{\prime} F}{F P}(\because P M=A B)-------e q 1$ |
| Since $\angle A P B=\angle A^{\prime} P B^{\prime}$ |
| $\triangle A^{\prime} B^{\prime} P \& \triangle A B P$ are also similar $\frac{B^{\prime} A^{\prime}}{B A}=\frac{B^{\prime} P}{B P} \quad---------e q 2$ |
| Comparing eq. 1 and eq. 2 $\frac{B^{\prime} P}{B P}=\frac{B^{\prime} P-F P}{F P}$ | \& 1/2 \&

\hline
\end{tabular}

	As per the sign convention $B^{\prime} P=-v, \quad F P=-f, \quad \mathrm{BP}=-\mathrm{u}$ $\begin{aligned} & \frac{-v+f}{-f}=\frac{-v}{-u}=\frac{v}{u} \\ & -v u+u f=-v f \end{aligned}$ Dividing by uvf $\Rightarrow \frac{1}{v}+\frac{1}{u}=\frac{1}{f}$ b) Magnification is different for different object distances	1 $1 / 2$	3
34	a) Formation of energy bands in a crystalline solid 1 mark b) Drawing the energy band diagram for p-type and n-type semiconductors Significance of donor/ acceptor energy level 1 mark a) Isolated atoms have discrete energy levels. In a crystalline solid, due to the presence of large number of atoms, interatomic interactions take place. Due to this, energy levels get modified to energy bands. [Even if the student writes about valence band, conduction band and energy gap, award full mark] b) c) Significance The number of electrons/ holes per unit volume increases. Alternatively, conductivity increases. Alternatively, electron easily gets promoted to conduction band.	$1 / 2+1 / 2$ 1	3
	SECTION D		
35	a) Meaning of plane polarised light 1 mark Diagram $1 / 2$ mark Derivation of the relationship between μ and θ $1 \frac{1}{2}$ marks b) Each graph $1+1$ marks a) A light whose electric vector direction does not change with time is a plane polarised light. Alternatively, if electric vector is confined to one particular plane, containing direction of propagation it is referred to as plane polarized light.	1	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
S is a monochromatic source of light. \(S_{1}\) and \(S_{2}\) are two pinholes separated by a distance d . \(\mathrm{GG}^{\prime}\) is the screen placed at the distance D from the pinholes. \\
\(P\) is a general point on the screen. \\
Derivation
\[
\begin{aligned}
\left(S_{2} P\right)^{2}-\left(S_{1} P\right)^{2} \& =\left[D^{2}+\left(x+\frac{d}{2}\right)^{2}\right]-\left[D^{2}+\left(x-\frac{d}{2}\right)^{2}\right] \\
\& =D^{2}+x^{2}+\frac{d^{2}}{4}+x d-D^{2}-x^{2}-\frac{d^{2}}{4}+x d \\
\& =2 x d
\end{aligned}
\]
\[
\text { path difference }=S_{2} P-S_{1} P=\frac{2 x d}{S_{2} P+S_{1} P} \approx \frac{2 x d}{2 D}
\] \\
For maxima
\[
\text { Path difference }=\frac{x d}{D}
\]
\[
\begin{gathered}
\frac{x d}{D}=n \lambda, \quad n=0,1,2 \ldots \\
\text { or } \quad x_{n}=\frac{n \lambda D}{d} \\
x_{n+1}=\frac{(n+1) \lambda D}{d} \\
\beta=x_{n+1}-x_{n} \\
\beta=\frac{\lambda D}{d}
\end{gathered}
\] \\
b)
\[
\begin{gathered}
\mu_{w}=\frac{c_{0}}{c_{w}}=\frac{v \lambda_{0}}{v \lambda_{w}}=\frac{\lambda_{0}}{\lambda_{w}} \\
\lambda_{w}=\frac{\lambda_{0}}{\mu_{w}}=\frac{588 \times 3}{4}=441 \mathrm{~nm} \\
c_{w}=\frac{c_{0}}{\mu_{w}}=\frac{3 \times 10^{8} \times 3}{4}=2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{gathered}
\]
\end{tabular} \& \[
\begin{gathered}
1 / 2 \\
\\
\\
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2+1 / 2
\end{gathered}
\] \& 5 \\
\hline 36 \& \begin{tabular}{l}
\begin{tabular}{|lc|}
\hline a) Diagram \& \(1 / 2 \mathrm{mark}\) \\
Derivation \& \(11 / 2 \mathrm{mark}\) \\
Orientation for maximum and half of the maximum \\
torque \& \(1 / 2+1 / 2 \mathrm{mark}\) \\
\& \\
b) Formula \& \(1 / 2 \mathrm{mark}\) \\
Calculation \& 1 mark \\
Result \& \(1 / 2 \mathrm{mark}\) \\
\hline
\end{tabular} \\
a) \\
From diagram
\[
\begin{aligned}
\text { Magnitude of Torque }= \& (q E)(2 a \sin \theta) \\
= \& (2 q a)(E \sin \theta) \\
\& =p E \sin \theta
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

$$
\begin{gathered}
=\frac{\mu_{o}}{2 \pi}\left(\frac{3}{6 \times 10^{-2}}+\frac{3}{6 \times 10^{-2}}\right) \\
\quad=\frac{4 \pi \times 10^{-7} \times 3}{\pi \times 6 \times 10^{-2}} \\
=2 \times 10^{-5} \text { tesla }
\end{gathered}
$$

Direction of \vec{B} at midpoint is perpendicular to the plane containing the two conductors and pointing downwards.
(Note: give full credit of this direction if student takes direction opposite to the shown in fig and answer accordingly)

OR

a) Diagram	1 mark
explaining the shape of the path	2 marks
b) formula	$1 / 2 \mathrm{mark}$
calculation	1 mark
result	$1 / 2 \mathrm{mark}$

a)

$$
\begin{gathered}
R_{2}+G=R_{o} \\
R_{3}+G=R_{o} / 2
\end{gathered}
$$

From the above equations,

$$
\begin{gathered}
R_{1}-R_{2}=2\left(R_{2}-R_{3}\right. \\
R_{1}-3 R_{2}+2 R_{3}=0
\end{gathered}
$$

Similarily

$$
\begin{aligned}
& \quad R=\frac{V}{i_{g}}-G \\
& R_{1}=\frac{2 V}{i_{g}}-G=R_{o}-G \\
& R_{1}+G=2 R_{o} \\
& \quad\left[\text { Where } R_{o}=\frac{V}{i_{g}}\right]
\end{aligned}
$$

