Strictly Confidential: (For Internal and Restricted use only) Senior School Certificate Examination-2020 Marking Scheme – PHYSICS THEORY (042)

(55/4/1)

General Instructions: -

- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.
- 2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
- 3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer 'X"be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- 6. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
- 11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong totaling of marks awarded on a reply.
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.

- Wrong grand total.
- Marks in words and figures not tallying.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- 12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
- 13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- 15. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- 16. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

MARKING SCHEME: PHYSICS				
	OUESTION PAPER CODE: 55/4/1			
Q.No.	Value Points/Expected Answer	Marks	Total Marks	
	SECTION A	1	1	
1	(b)	1	1	
	v t			
	0 R			
2	(c) $\frac{R}{r}$	1	1	
2		1	1	
3	(d) $\frac{\mu_0}{2R} \times (1 - \frac{1}{\pi})$	1	1	
4	(b) Zero	1	1	
5	(b) 1:1	1	1	
6	$\begin{array}{c} (c) & 4 \\ \hline \end{array}$	1	1	
7	(a) $2x10^{-3}$ T acting downwards	1	1	
8	$\begin{array}{c c} (c) & \pi \\ \hline \end{array}$			
9	(a) Initia red region	1	1	
10	(a) Only on impact parameter	1	1	
11	$\frac{90^{\circ}01^{\circ}-\frac{1}{2}}{2}$	1	1	
12	Decreasing/Lower		1	
13	Middle/mid point /center			
	UR Decrease			
14	Zero	1	1	
15	$\beta^{-}/\rho^{-1}/\rho$ lectron	1	1	
16	Because the electrostatic force is conservative in nature	1	1	
10	Alternatively:-		-	
	Electric field is conservative in nature / work done by or against			
	the electric field does not depend upon the path followed.			
17	Magnetic declination is the angle between the magnetic meridian	1	1	
1.0	and the geographic meridian at a place on the earth.			
18	The displacement current will decrease.	1	1	
	<i>Hint</i> : $-(I_c = \frac{V}{V} = \frac{V}{V} = \omega CV)$ / the rate of change of electric			
	$\begin{pmatrix} C & X_C & \left(\frac{1}{\omega c}\right) \end{pmatrix}$			
10	flux/electric field will decrease	1/	1	
19	Reflecting type telescope	1/2	1	
	Mirror have large aperture/high resolving power/ free from	1/2		
	chromatic aberration /free from spherical aberration. (Any one)	/2		
20	No	1/2	1	
	As there will be discontinuity for the flow of charge carriers / no			
	contact at atomic level.	1⁄2		
	(Any One Justification)			
	OR			
	The forward current is large due to majority charge carriers which	1		
	are very large in number. Hence resistance in forward bias is low.	1		
	decreases.			

24			
	(a) Comparison of frequencies 1		
	(b) Justification 1		
	(a) Let v_{0A} , v_{0B} and v_{0C} be their threshold frequencies for		
	the surfaces A,B and C		
	Therefore $v_{0A} > v_{0B} > v_{0C}$	1	
	(b) Justification :-		
	If the frequency of incident light/photon is υ	• /	
	$hv = hv_0 + E_k$	1/2	
	Therefore $v_{0A} > v_{1}v_{0B} = v_{and}v_{0c} < v_{0b}$	1/	2
		1/2	2
	OR		
	(i) Effect on the energy of the photo electrons 1		
	(ii) Effect on photoelectric current 1		
	(i) The energy of the emitted photoelectrons increases	1/2	
	$\Delta s = F_1 - h_1 - h_2$	/ 2	
	As $L_k = hv = \psi_0$ As v increases F ₁ also increases	1/2	
	$As o mercases, E_R also mercases$	/2	
	(ii) Photo current will not be affected	1/2	
		/2	
	As, increase of v , $\mathbf{E}_{\mathbf{k}}$ will increase but not the number of		
	photoelectrons	1/2	2
	[Alternatively photocurrent depends upon intensity of light and not		
	on frequency]		
25			
	Explanation of set up of potential barrier 2		
	Diffusion current is set up across the junction due to the		
	concentration difference of the majority charge carriers on the two	1	
	sides of the junction.		
	This diffusion develops an electric field from n- side to p- side	1/2	
	across the junction which creates a drift current in the opposite		
	direction.		2
	When diffusion and drift current become equal in magnitude the	1/	2
26	potential difference across the junction is the barrier potential.	72	
26	(a) Dhata dia la in marana hiaring 1		
	(a) Photo diode in reverse blasing 1 (b) V L Characteristics of photodiode 1		
	(b) V-1 Characteristics of photodiode		
	(a) Because the fractional change in the minority carriers	1	
	dominated very weak reverse current is more easily	1	
	measurable than fractional change in forward biased large		
	current		

(a) Principle of working of potentiometer 1 (b) Finding emf of two cells 1+1 (a) For a steady current flowing through a uniform wire , the potential difference between any two points is directly proportional to the length of the wire between the two points (b) Potential gradient = $\frac{5}{1000} V cm^{-1}$ $E_1 + E_2 = 700 \times \frac{5}{1000} = 3.5 V$ (i) $E_1 - E_2 = 100 \times \frac{5}{1000} = 0.5 V$ (ii) Solving these two equations, we get	1 1/2 1/2 1/2 1/2	3
$E_1=2V \text{ and } E_2=1.5 \text{ V}$, <u>-</u>	5
 30 (a) Difference between self-inductance and mutual inductance (b) Finding (i) Change in magnetic flux (ii) EMF induced (a) Self inductance is the response of the coil/ solenoid to the charge in current in the coil/ solenoid itself (or definition of self inductance) Mutual inductance is the response of a coil to the charge of current in a neighbouring coil (or definition of mutual inductance) Alternatively Self-inductance is the property of given coil/solenoid Mutual inductance is the property of given pair of coils /solenoids (b) 	1/2 1/2	
(i) $\Delta \phi = M \Delta I = 2 \times 0.5 = 1Wb$ (ii) $e = -\frac{d\phi}{dt} = \frac{1}{100 \times 10^{-3}} = 10V$	$\frac{1}{2} + \frac{1}{2}$	3
31 Diagram of step down transformer 1 Working 1 Use of laminated core 1 (a) (a) Soft iron-core Use of laminated core Alternatively	1	

	Soft iron-core		
	Primary		
	(b) When an a.c. voltage is applied across the primary coil, the resulting a.c. current in the primary coil changes the magnetic flux linked with the secondary coil, as a result an emf is induced across the secondary coil. As the number of turns in the secondary coil is less than that in the primary coil in the step down transformer, the output voltage is less	1	
	 (c) Use of laminated core :- Use of laminated sheets minimizes the eddy currents, hence the energy loss. 	1	3
32	(i) Naming electromagnetic waves 1 ¹ / ₂ (ii) Their frequency range 1 ¹ / ₂		
	(a) Gamma rays, frequency range 10^{19} to 10^{24} Hz (a) UV rays, frequency range 10^{15} to 10^{17} Hz (b) Infrared rays, frequency range 10^{12} to 10^{14} Hz	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	3
33	 (a) Phase difference between the waves 1 (b) Resultant intensity at the point 1 (c) Resultant intensity in terms of intensity at maximum 1 		
	(a) Phase difference $\emptyset = \frac{2\pi}{\lambda} \times \frac{\lambda}{6} = \frac{\pi}{3}$ (b) $I_1 = I_2 + I_3 + 2\sqrt{I_3 I_2} \cos \emptyset$	1/2+ 1/2	
	$= I + I + 2I \times \frac{1}{2} = 3I$ = 15 × 10 ⁻² Wm ⁻² (c) I _{max} = 4I	1/2+ 1/2	
	$I_1 = \frac{3I}{4I} \times 4I = \frac{3}{4}I_{max}$	1/2+ 1/2	3
34	Calculating the distance of Q from the mirror formula1Calculation and result2		
	For object P $m = \frac{h_2}{h_1} = \frac{f}{f - u_1}$ For Object Q	1/2	
	$m'=\frac{h_2'}{h_1'}=\frac{f}{f-u_2}$	1⁄2	

	OP		
	(a) Derivation for the force between two current carrying wires2Definition of 1 A1(b) Calculation of value of F1 1/2Effect on equilibrium if F is withdrawn1/2		
	(a)		
	Magnetic field due to the current I_a flowing in conductor 'a' at any point on conductor 'b'	1⁄2	
	$B_a = \frac{\mu_0 r_a}{2\pi d}$	1/2	
	$2\pi a$ (Acting perpendicular downward) Therefore force on conductor the data field D	/2	
	$\vec{F} = I_b (\vec{l}_b \times \vec{B}_a)$ $ \vec{F}_{ba} = I_b l_b \times \frac{\mu_0 I_a}{2\pi d}$ $= \frac{\mu_0 I_a I_b l_b}{2\pi d}$	1⁄2	
	$\frac{\left \overrightarrow{F_{ba}}\right }{l_{b}} = \frac{\frac{2\pi d}{\mu_{0} I_{a} I_{b}}}{2\pi d}$	1/2	
	Definition of 1 A : Two straight infinitely long parallel conductors are said to carry 1 A current each when they interact each other with a force of $2 \times 10^{-7} Nm^{-1}$, when kept 1m apart in vacuum (b) In equilibrium	1	
	Restoring Torque = Deflecting Torque $F \times r = m B \sin \theta$	1/2	
	$F \times 10 \times 10^{-2} = 3 \times 0.25 \times \sin 30^{0}$ $F = \frac{3 \times 0.25 \times 1}{2}$	1⁄2	
	$10 \times 10^{-2} \times 2$ = 3.75 N The magnet oscillates for sometime but finally aligns	1/2	
	along the original direction of the external magnetic field.	1/2	5
36			
	(a) (i) Ray diagram showing refraction in a prism 1 (ii) Derivation $\mu = \frac{\sin^{(A+\delta_m)}/2}{\sin^{A}/2}$ 2		
	(b) (i)Tracing the path of the ray 1		
	(ii) Effect on path of the ray 1		

	$\mu_l = \frac{5}{2}$	1/2	5
37	3	72	
	(a) Derivation for decay law $2\frac{1}{2}$		
	(b) Calculation of mean life $1\frac{1}{2}$		
	(c) Calculation of fraction of finitial mass		
	(a) Let N_0 be the initial (t = 0) number of radioactive substance		
	and N be the number of radioactive substance at interval $t = t$		
	Hence rate of radioactive decay = $-\frac{dN}{\alpha} \propto N$	1/2	
	dN	12	
	$\frac{\partial dt}{\partial t} = -\lambda N$		
	$\int_{0}^{N} \frac{dN}{dt} = -\int_{0}^{t} \lambda dt$	1/	
	$\int_{N_0} N = \int_0 n dt$	1/2	
	$\ln N - \ln N \lambda t$		
	$\frac{1}{N} \frac{1}{2} \frac{1}{N} \frac{1}{2} \frac{1}{N} \frac{1}{2} \frac{1}{N} \frac{1}$	1/2	
	$\frac{1}{N_0} = e^{-\lambda t}$	1/2	
	$N = N_0 e^{-\lambda t}$	1/2	
	(D) T_1		
	$\tau = \frac{1}{2}$	1/2	
	$l = \log 2$		
	$-\frac{4.5 \times 10^9}{1000}$	1/2	
	- 0.693	1/2	
	$\tau = 6.493 \times 10^9$ years	<i>,</i> _	
	$(n) \frac{N}{n} = \frac{1}{n}$		
	$(C)\frac{1}{N_0} = \frac{1}{2^n}$		
	$\frac{N}{N_0} = (\frac{1}{2})^5$	1/2	
	$\frac{N}{N} = \frac{1}{1}$ therefore fraction decaying $(1-\frac{1}{N}) = \frac{31}{1}$		5
	$N_0 = \frac{1}{32}$ therefore machinal decaying $(1 - \frac{1}{32})^2 = \frac{1}{32}$	1/2	
	OR		
	(a) Bohr's Postulate and Derivation of expression 3		
	(b) Finding ratio of wavelengths 2		
	(a) Bohr's Postulates:-		
	1) An electron in an atom could revolve in certain stable		
	orbits without the emission of radiant energy	1/2	
	2) The electron revolves around the nucleus only in those	/2	
	orbits for which the angular momentum is some integral multiple of $h/2\pi$ where h is the Plandtin		
	multiple of $h/2\pi$ where h is the Planck's constant 3) The frequency of the emitted photon when an electron	1/2	
	makes a transition from higher orbit to lower energy orbit		
	is given by		
	$h v = E_2 - E_1$	17	
	$L_n = m v_n r_n = \frac{1}{2\pi} $ (1)	1/2	

$mv_n^2 _ 1 e^2$		1/2	
$r_n = 4\pi\epsilon_0 r_n^2$			
$v_n = \frac{e}{\sqrt{1-e^2}}$			
$\sqrt{4\pi\epsilon_0 m r_n}$		1/2	
Combining wit h equation (i)			
$\frac{1}{12} - \frac{1}{2} \frac{e^2}{1}$			
$v_n - n 4\pi\epsilon_0 (h/\pi)$			
$r_n = \left(\frac{n^2}{m}\right) \left(\frac{h}{2\pi}\right)^2 \left(\frac{4\pi\epsilon_0}{e^2}\right)$		1⁄2	
(b) For shortest wave length			
$\frac{1}{1} = R(\frac{1}{1} - \frac{1}{1})$			
$\lambda_s \sim 2^2 \infty'$			
1 <i>R</i>	\sim		
$\frac{1}{\lambda_S} = \frac{1}{4}$	(1)	1/2	
For longest wave length			
$\frac{1}{1} = R(\frac{1}{2^2} - \frac{1}{2^2})$			
$=R(\overline{4}-\overline{9})$			
$=R(\frac{5}{5})$	ii)	1/	
$\frac{1}{36}$		1/2	
(1/2) $(1/2)$ $(1/2)$ $(1/2)$ $(1/2)$ $(1/2)$			
$\frac{(1/\lambda_s)}{(1/4)} = \frac{(1/4)}{(1/4)}$		1/2	
$(1/\lambda_L)^{-}(5R/36)$		/ 2	
$\frac{\lambda_L}{\lambda_L} = \frac{9}{2}$ OR $\lambda_I : \lambda_S = 9:5$		1/-	5
λ_S 5 λ_L λ_S 5		72	3