Strictly Confidential: (For Internal and Restricted use only) Senior School Certificate Examination-2020 Marking Scheme - PHYSICS THEORY (042)

(55/4/1)

General Instructions: -

1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. Evaluation is a $10-12$ days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.
2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
4. Evaluators will mark $(\sqrt{ })$ wherever answer is correct. For wrong answer ' X "be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
6. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
9. A full scale of marks $0-70$ has to be used. Please do not hesitate to award full marks if the answer deserves it.
10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on a reply.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
15. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
16. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

MARKING SCHEME: PHYSICS			
QUESTION PAPER CODE: 55/4/1			
Q.No.	Value Points/Expected Answer	Marks	Total Marks
SECTION A			
1		1	1
2	(c) $\frac{R}{2}$	1	1
3	(d) $\frac{\mu_{0} I}{2 R} \times\left(1-\frac{1}{\pi}\right)$	1	1
4	(b) Zero	1	1
5	(b) $1: 1$	1	1
6	(c) 4 I	1	1
7	(a) $2 \times 10^{-5} \mathrm{~T}$ acting downwards	1	1
8	(c) $\quad \pi$	1	1
9	(a) Infra red region	1	1
10	(a) Only on impact parameter	1	1
11	90^{0} or $\frac{\pi}{2}$	1	1
12	Decreasing/Lower	1	1
13	Middle/mid point/center OR Decrease	1	1
14	Zero	1	1
15	$\beta^{-} / e^{-1} /$ electron	1	1
16	Because the electrostatic force is conservative in nature Alternatively:- Electric field is conservative in nature / work done by or against the electric field does not depend upon the path followed.	1	1
17	Magnetic declination is the angle between the magnetic meridian and the geographic meridian at a place on the earth.	1	1
18	The displacement current will decrease. Hint : $-\left(I_{C}=\frac{V}{X_{C}}=\frac{V}{\left(\frac{1}{\omega c}\right)}=\omega \mathrm{CV}\right)$ / the rate of change of electric flux/electric field will decrease	1	1
19	Reflecting type telescope Reason/Justification :- Mirror have large aperture/high resolving power/ free from chromatic aberration /free from spherical aberration. (Any one)	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
20	No As there will be discontinuity for the flow of charge carriers / no contact at atomic level. (Any One Justification) OR The forward current is large due to majority charge carriers which are very large in number. Hence resistance in forward bias is low. Alternatively: Depletion region decreases or barrier potential decreases.	$1 / 2$ $1 / 2$ 1	1

SECTION B			
21	(i) Net capacitance of the combination 1 (ii) Total Charge stored in the network 1 (i) $\begin{aligned} \text { Net Capacitance } \Rightarrow \quad \frac{1}{C_{\text {net }}} & =\frac{1}{10}+\frac{1}{5} \\ \mathrm{C}_{\text {net }} & =\frac{10}{3} \mu F \end{aligned}$ (ii) $\mathrm{q}=\mathrm{C}_{\text {net }} \mathrm{V}=\frac{10}{3} \times 3=10 \mu \mathrm{C}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$	2
22	(a) Graph 1 (b) Final resistance 1 (b) Final resistance (a) $R=S \frac{l}{A}=S \frac{l^{2}}{V}$ [Note if a student draws only the graph correctly, award full 1 mark] (b) Resistance becomes $4 \mathrm{R}_{0}$ (Hint :- As $R=\frac{\rho l}{A}=\frac{\rho l^{2}}{A l}=\frac{\rho l^{2}}{V}$) $R \propto l^{2}$	$1 / 2$ $1 / 2$ 1	2
23	(i) Finding average power dissipated 1 (ii) Finding instantaneous current 1 (i) Average power dissipated $\begin{aligned} P_{1} & =I_{e f f} \times V_{e f f} \times \cos 0^{0} \\ & =I_{e f f} \times I_{e f f} \times R \times 1=I_{e f f}^{2} R=\frac{V_{0}^{2}}{R} \end{aligned}$ (ii) Instantaneous Current $I=\frac{V}{R}=\frac{V_{0}}{R} \sin \omega t=I_{0} \sin \omega t$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$	2

SECTION C

(a) Giving the value of surface charge density of
(i) Inner surface (ii) Outer Surface $1 / 2+1 / 2$
(b) Deriving expression for electric field
(a) Surface charge density on the inner surface $=\frac{q}{4 \pi r_{1}^{2}}$

On the outer surface $=\frac{Q-q}{4 \pi r_{2}^{2}}$
(b) For a spherical Gaussian surface $x>r_{2}$

$$
\begin{aligned}
& \oint \vec{E} \overrightarrow{d s}=\frac{Q-q}{\epsilon_{0}} \\
& E \times 4 \pi x^{2}=\frac{Q-q}{\epsilon_{0}} \\
& E=\frac{1}{4 \pi \epsilon_{0}} \frac{Q-q}{x^{2}}
\end{aligned}
$$

OR
(a) Derivation for electric field due to a uniformly charged straight wire
(b) Graph showing variation of electric field E vs distance x

1
(a)

$$
\begin{gathered}
\oint \vec{E} \cdot \overrightarrow{d S}=\frac{q}{\epsilon_{0}} \\
\int \vec{E} \cdot \overrightarrow{d S_{1}}+\int \vec{E} \cdot \overrightarrow{d S_{2}}+\int \vec{E} \cdot \overrightarrow{d S_{3}}=\frac{\lambda l}{\epsilon_{0}}
\end{gathered}
$$

$$
E d S_{1} \cos 90^{\circ}+E d S_{2} \cos 90^{\circ}+E d S_{3} \cos 0^{0}=\frac{\lambda l}{\epsilon_{0}}
$$

$$
0+0+E \times 2 \pi x l=\frac{\lambda l}{\epsilon_{0}}
$$

$$
E=\frac{\lambda}{2 \pi \epsilon_{0} x}
$$

(b)

29	(a) Principle of working of potentiometer 1 (b) Finding emf of two cells (a) For a steady current flowing through a uniform wire, the potential difference between any two points is directly proportional to the length of the wire between the two points (b) Potential gradient $=\frac{5}{1000} \mathrm{Vcm}^{-1}$ $\begin{align*} & E_{1}+E_{2}=700 \times \frac{5}{1000}=3.5 \mathrm{~V} \tag{i}\\ & E_{1}-E_{2}=100 \times \frac{5}{1000}=0.5 \mathrm{~V} \tag{ii} \end{align*}$ Solving these two equations, we get $\mathrm{E}_{1}=2 \mathrm{~V} \text { and } \mathrm{E}_{2}=1.5 \mathrm{~V}$	1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
30	(a) Difference between self-inductance and mutual inductance (b) Finding (i) Change in magnetic flux (ii) EMF induced (a) Self inductance is the response of the coil/ solenoid to the charge in current in the coil/ solenoid itself (or definition of self inductance) Mutual inductance is the response of a coil to the charge of current in a neighbouring coil (or definition of mutual inductance) Alternatively Self-inductance is the property of given coil/solenoid Mutual inductance is the property of given pair of coils /solenoids (b) (i) $\Delta \phi=M \Delta I=2 \times 0.5=1 \mathrm{~Wb}$ (ii) $e=-\frac{d \phi}{d t}=\frac{1}{100 \times 10^{-3}}=10 \mathrm{~V}$	$1 / 2$ $1 / 2$ $\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$	3
31	Diagram of step down transformer 1 Working 1 Use of laminated core 1 (a)	1	

	Now $h_{1=} 3 h_{1}^{\prime} ; h_{2}=h_{2}^{\prime} ; f=-20 \mathrm{~cm} ; u_{1}=-50 \mathrm{~cm}$ $\begin{gathered} \frac{m}{m^{\prime}}=\frac{h_{2}}{h_{1}} \times \frac{h_{1}^{\prime}}{h_{2}^{\prime}}=\frac{f-u_{2}}{f-u_{1}} \\ \frac{m}{m^{\prime}}=\frac{1}{3}=\frac{-20-u_{2}}{-20+50} \\ 10=-20-u_{2}=>u_{2}=-30 \mathrm{~cm} \end{gathered}$	$1 / 2$ 1 $1 / 2$	3
SECTION D			
35	(a) Solenoid as a small bar magnet Expression for magnitude of magnetic field (b) Magnitude of magnetic dipole moment (a) A solenoid may be regarded as a combination of large number of identical circular current loops in which each behaves like a magnetic dipole. Hence, the current carrying solenoid will behave like a small bar magnet. Expression for magnetic field :- Figure shows a solenoid consisting of n turns per unit length Consider a circular element of thickness $d x$ at a distance x from the centre of the solenoid Therefore magnetic field at point P due to this circular element $\begin{aligned} & d B=\frac{\mu_{0} n d x I a^{2}}{2\left[(r-x)^{2}+a^{2}\right]^{\frac{3}{2}}} \\ & B=\frac{\mu_{0} n I a^{2}}{2} \int_{-l}^{+l} \frac{d x}{\left[(r-x)^{2}+a^{2}\right]^{\frac{3}{2}}} \end{aligned}$ For point $\mathrm{P}, \mathrm{r} \gg \mathrm{a}$ and $r \gg l$ $\begin{aligned} B & =\frac{\mu_{0} n I a^{2}}{2 r^{3}} \int_{-l}^{+l} d x=\frac{\mu_{0} n I 2 l a^{2}}{2 r^{3}} \\ B & =\frac{\mu_{0}}{4 \pi} \frac{2 m}{r^{3}} \end{aligned}$ (b) $\begin{aligned} M & =N I \pi a^{2} \\ & =5 \times 2 \times \frac{22}{7} \times 49 \times 10^{-4} \\ & =154 \times 10^{-3} \\ & =0.154 \mathrm{Am}^{2} \end{aligned}$ \vec{M} will be perpendicular to x - y plane or parallel to Z axis	1/2	5

