अतियंत गोपनीय -केवल आंतरिक एवं सीमित प्रयोग हेत्

माध्यमिक विधालय परीक्षा, मार्च-2020 अंक-योजना SCIENCE

SUBJECT कोड संख्या: 086 PAPER कोड: 31/5/1

सामान्य निर्देश:-

- 1. आप जानते हैं कि परीक्षार्थियों के सही और उचित आकलन के लिए उत्तर पुस्तिकाओं का मूल्यांकन एक महत्वपूर्ण प्रक्रिया है। मूल्यांकन में एक छोटी-सी भूल भी गंभीर समस्या को जन्म दे सकती है जो परीक्षार्थियों के भविष्य, शिक्षा प्रणाली और अध्यापन-व्यवस्था को भी प्रभावित कर सकती है। इससे बचने के लिए अनुरोध किया जाता है कि मूल्यांकन प्रारंभ करने से पूर्व ही आप मूल्यांकन निर्देशों को पढ़ और समझ लें। मूल्यांकन हम सबके लिए 10-12 दिन का मिशन है अतः यह आवश्यक है कि आप इसमें अपना महत्वपूर्ण योगदान दें।
- 2. मूल्यांकन अंक-योजना में दिए गए निर्देशों के अनुसार ही किया जाना चाहिए, अपनी व्यक्तिगत व्याख्या या किसी अन्य धारणा के अनुसार नहीं। यह अनिवार्य है कि अंक-योजना का अनुपालन पूरी तरह और निष्ठापूर्वक किया जाए। हालाँकि, मूल्यांकन करते समय नवीनतम सूचना और ज्ञान पर आधारित अथवा नवाचार पर आधारित उत्तरों को उनकी सत्यता और उपयुक्तता को परखते हुए पूरे अंक दिए जाएँ। कक्षा दसवीं के प्रश्नपत्र में दिए गए दक्षता आधारित(competency based) दो प्रश्नों का मूल्यांकन करने में कृपया विद्यार्थियों द्वारा दिए गए उत्तर को समझने का प्रयास करें; उनके उत्तर चाहे अंक-योजना में दिए गए उत्तर से मेल न खाते हों तब भी सही दक्षताओं की परिगणना की गई हो तो अंक दिए जाने चाहिए।
- 3. मुख्य परीक्षक प्रत्येक मूल्यांकन कर्ता के द्वारा पहले दिन जाँची गई पाँच उत्तर पुस्तिकाओं के मूल्यांकन की जाँच ध्यानपूर्वक करें और आश्वस्त हों कि मूल्यांकन-योजना में दिए गए निर्देशों के अनुसार ही मूल्यांकन किया जा रहा है। परीक्षकों को बाकी उत्तर पुस्तिकाएँ तभी दी जाएँ जब वह आश्वस्त हो कि उनके अंकन में कोई भिन्नता नहीं है।
- 4. परीक्षक सही उत्तर पर सही का निशान (√) लगाएँ और गलत उत्तर पर गलत का (×)। मूल्यांकन-कर्ता द्वारा ऐसा चिह्न न लगाने से ऐसा समझ में आता है कि उत्तर सही है परंतु उस पर अंक नहीं दिए गए। परीक्षकों द्वारा यह भूल सर्वाधिक की जाती है।
- 5. यदि किसी प्रश्न का उपभाग हों तो कृपया प्रश्नों के उपभागों के उत्तरों पर **दायीं ओर** अंक दिए जाएँ। बाद में इन उपभागों के अंकों का योग **बायीं ओर** के हाशिये में लिखकर उसे गोलाकृत कर दिया जाए। **इसका अनुपालन** दृद्धतापूर्वक किया जाए।
- 6. यदि किसी प्रश्न के कोई उपभाग न हो तो बायीं ओर के हाशिये में अंक दिए जाएँ और उन्हें गोलाकृत किया जाए। इसके अनुपालन में भी दृढ़ता बरती जाए।
- 7. यदि परीक्षार्थी ने किसी प्रश्न का उत्तर दो स्थानों पर लिख दिया है और किसी को काटा नहीं है तो जिस उत्तर पर अधिक अंक प्राप्त हो रहे हों, उस पर अंक दें और दूसरे को काट दें। यदि परीक्षार्थी ने अतिरिक्त प्रश्न/प्रश्नों का उत्तर दे दिया है तो जिन उत्तरों पर अधिक अंक प्राप्त हो रहे हों उन्हें ही स्वीकार करें/ उन्हीं पर अंक दें।

- 8. एक ही प्रकार की अशुद्धि बार-बार हो तो उसे अनदेखा करें और उस पर अंक न काटे जाएँ।
- 9. यहाँ यह ध्यान रखना होगा कि मूल्यांकन में संपूर्ण अंक पैमाने 0 80 का प्रयोग अभीष्ट है अर्थात परीक्षार्थी ने यदि सभी अपेक्षित उत्तर-बिंदुओं का उल्लेख किया है तो उसे पूरे अंक देने में संकोच न करें।
- 10. प्रत्येक परीक्षक को पूर्ण कार्य-अविध में अर्थात 8 घंटे प्रतिदिन अनिवार्य रूप से मूल्यांकन कार्य करना है और प्रतिदिन मुख्य विषयों की बीस उत्तर-पुस्तिकाएँ तथा अन्य विषयों की 25 उत्तर पुस्तिकाएँ जाँचनी हैं। (विस्तृत विवरण 'स्पॉट गाइडलाइन' में दिया गया है)
- 11. यह सुनिश्चित करें कि आप निम्नलिखित प्रकार की त्रुटियाँ न करें जो पिछले वर्षों में की जाती रही हैं
 - उत्तर पुस्तिका में किसी उत्तर या उत्तर के अंश को जाँचे बिना छोड़ देना।
 - उत्तर के लिए निर्धारित अंकों से अधिक अंक देना।
 - उत्तर या दिए गए अंकों का योग ठीक न होना।
 - उत्तर पुस्तिका के अंदर दिए गए अंकों का आवरण पृष्ठ पर सही अंतरण न होना।
 - आवरण पृष्ठ पर प्रश्नानुसार योग करने में अशुद्धि।
 - योग करने में अंकों और शब्द में अंतर होना।
 - उत्तर पुस्तिकाओं से ऑनलाइन अंकसूची में सही अंतरण न होना।
 - कुल अंकों के योग में अशुद्धि
 - उत्तरों पर सही का चिह्न (∨) लगाना किंतु अंक न देना। सुनिश्चित करें कि (∨) या (×) का उपयुक्त निशान ठीक ढंग से और स्पष्ट रूप से लगा हो। यह मात्र एक रेखा के रूप में न हो)
 - उत्तर का एक भाग सही और दूसरा गलत हो किंतु अंक न दिए गए हों।
- 12. उत्तर पुस्तिकाओं का मूल्यांकन करते हुए यदि कोई उत्तर पूर्ण रूप से गलत हो तो उस पर (x) निशान लगाएँ और शून्य (0) अंक दें।
- 13. उत्तर पुस्तिका में किसी प्रश्न का बिना जाँचे हुए छूट जाना या योग में किसी भूल का पता लगना, मूल्यांकन कार्य में लगे सभी लोगों की छवि को और बोर्ड की प्रतिष्ठा को धूमिल करता है।
- 14. सभी परीक्षक वास्तविक मूल्यांकन कार्य से पहले 'स्पॉट इवैल्यूएशन' के निर्देशों से सुपरिचित हो जाएँ।
- 15. प्रत्येक परीक्षक सुनिश्चित करे कि सभी उत्तरों का मूल्यांकन हुआ है, आवरण पृष्ठ पर तथा योग में कोई अशुद्धि नहीं रह गई है तथा कुल योग को शब्दों और अंकों में लिखा गया है।
- 16. केंद्रीय माध्यमिक शिक्षा बोर्ड परिषद पुन: मूल्यांकन प्रक्रिया के अंतर्गत परीक्षार्थियों के अनुरोध पर निर्धारित शुल्क भुगतान के बाद उन्हें उत्तर पुस्तिकाओं की फोटो कॉपी प्राप्त करने की अनुमति देती है।

मूल्याकंन बिन्दु/सम्भावित उत्तर प्रश्न पत्र क्रमांक 31/5/1

प्र0 स0	मूल्याकंन बिन्दु/सम्मावित उत्तर	अंक	कुल अंव
	खण्ड – क		
1.	आवेशित कण नहीं / आयन	1	- 1 in
2.	सभी उपघातु अर्थघातु <u>हैं / घातु और अघातु के गुण</u> प्रदर्शित करते है । अथवा	2.	
	धातुओं के गुणधर्म उनकी परमाणु — संख्या के आवर्त फलन होते हैं।	1	1
3.	a) सेल जो सौर ऊर्जा को विद्युत ऊर्जा / विद्युत में परिवर्तित करते है ।	1	. 9
	b) वोल्टता — 0.5 से 1V	1/2	
	विद्युत - 0.7 W	1/2	
	c) भारत में सौर ऊर्जा पूरे वर्ष भरपूर मात्रा में मिलती है। d) लाभ :- गतिमान पुरजा नहीं/सस्ता रखरखाव/बिना	1	
	किसी फोकसन युक्ति के काफी संतोषजनक कार्य/सुदूर एवं अगम्य स्थानों में स्थापित किया जा सकता है ।	1/2	4
4.	a) थाइरॉइड उदीपक हॉर्मोन	1	
e.	b) यह थाइरॉइड (अवटु) ग्रन्थि को थाइरॉइड हॉर्मोन या थाइरॉक्सिन उत्पन्न करने के लिए उदीप्त/नियंत्रित करता हैं।	1	
	c) TSH का उच्च या निम्न स्तर गर्भापात के संयोग को बढ़ा सकता है ।	1	=
	d) उचित दवाई देना आवश्यक है ।	1	4
5.	(C) / कोई परिवर्तन नहीं	1	1
6.	(B) / 10 ⁻³ A और 10 ⁻⁶ A क्रमशः	1	1
7.	(A) / 5A	1	1
8.	(D) / I , II और III अथवा	1	
	(D) / कम उपयोग	1	1
9.	(B) / चिपको आन्दोलन	1	1
10.	(B) / वियोजन और रेडाक्स	1	1
11.	(B) / हरा	1	1
. 12.	(B) / X Y ₂	1	HEV.
	अथवा	83	767
	(B) / (C) ग्रुप 16 और आवर्त 3 / ग्रुप 17 और आवर्त 3 (नोट:– दोनों उत्तर सही, किसी एक का सही होने पर पूर्ण	1	
	अंक)		1

13.	(iv) / (A) गलत है, परन्तु (R) सही है ।		
14.	(ii) / (A) and (B) and (B) and (B)	1	1
	(ii) / (A) और (R) दोनों सही है – परन्तु (R) अभिकथन (A) की सही व्याख्या नहीं है ।	1	1
- 10-	खण्ड—ख		
15.	No. 1	1	
10.	(a) 'M' मैग्नीशियम है / Mg	1/2	
	'N' मैग्नीशियम ऑक्साइड है / MgO	1/2	
	(b) $2Mg+O_2 \rightarrow 2MgO$	1	_
	(c) 'Mg'का उपयचन होता है क्योंकि इसमें ऑक्सीजन	1/2 + 1/2	_
	जुड़ती है / 2 इलेक्ट्रॉन का नुकसान	1/2 + 1/2	3
16.	(a) ऐनोड – ऑक्सीजन		
	कैथोड – हाईड्रोजन	1	
	(b) क्योंकि पानी के एक अणु में हाईड्रोजन के 2 परमाणु		16
	और ऑक्सीजन का एक परमाणु होता है /		-
	$2H_2O \rightarrow 2H_2 + O_2$	1	
	(c) जल का विद्युत अपघटन नहीं होगा		
	(७) नस मा मिश्रुस अमिन ।, महा होना	1	*
	अथवा		
	(a) रासायनिक नाम – सोडियम कार्बोनेट डेकाहाइड्रेट		
	सामान्य नाम – धोने का सोडा	1/2 X 3	
	रासायनिक सूत्र Na ₂ CO ₃ .10H ₂ O		
	(b) NaCl +H ₂ O + CO ₂ + NH ₃ \rightarrow NH ₄ Cl+NaHCO ₃		
	तापन	19	
	$2NaHCO_3 \longrightarrow Na_2CO_3 + H_2O + CO_2$	1	
8	$Na_2CO_3+10H_2O \rightarrow Na_2CO_3.10H_2O$		
			9
	(c) यह जल की स्थायी कठोरता दूर करने में मदद करता	1/2	
	है। यह Ca और Mg के अविलेय लवण बनाता है ।		3
17.	(a) Li, K	1/2	
	(b) Mg	1/2	
	(c) C	1/2	
	(d) K	1/2	
	(e) S	1/2	
	(f) Al	1/2	3
18.	 पोषी स्तर – आहार श्रंखला का प्रत्येक चरण या 		
007457 5570	स्तर इसका पोषी स्तर कहलाता है ।	1	
		•	
	 घास→कीट → मेंढ़क→सांप/बाज/सही चित्र द्वारा 	1	
	(कोई और आहार श्रंखला)	**	
	• उत्पादक से उपभोक्ता की ओर प्रत्येक चरण में ऊर्जा		
	का हास होता जाता है और अगले चरण को यह कम	1	
15	मात्रा में उपलब्ध हो पाती है ।		
	अथवा		
	(i) जलीय	1/2	
	(ii) अजैव	1/2	
	(iii) वायु/जल/मृदा/ताप/अजैव घटक	1/2	
	(iv) जैव घटक / पौधे एवं जन्तु	1/2	
	(v) परिभाषा – किसी क्षेत्र के सभी जीव तथा वातावरण	· × · -	W
	(१) नारमाना मिक्सा बात्र के सामा जाव तथा वातावरण		

	के अजैव कारक संयुक्त रूप से पारितंत्र बनाते हैं/		T
	जैव एवं अजैव कारकों के बीच पारस्परिक अन्योन्यक्रिया	1	
19.	(a) गैसों का आदान – प्रदान	1	3
	(b) हवा की तुलना में जल में विलेय ऑक्सीजन की कम मात्रा	1	1 = -
	(c) (1) पायक्तवेट	1/2	
\$	(ii) कार्बन डाइऑक्साइड	1/2	3
20.	(a) लम्बाई लक्षण प्रभावी है	1	
	(b) F ₂ पीढ़ी में अप्रभावी लक्षण तब परिलक्षित होता है		F - 44.
	जब अप्रभावी लक्षण की दो प्रतिकृति एक साथ उपस्थित होती हैं । (t t)	1	
	(c) F ₂ संततियों में, अप्रभावी लक्षण के साथ प्रभावी लक्षण		
6	भी 3:1 के अनुपात में परिलक्षित होता है ।	1	3
21.	(a) शुक्राशय के स्त्राव	1	
	22 + x और 22 + y	1/2+	
	(b) (i) मादा – xx	1/2	
	(b) (i) मादा — xx (ii) नर — xy	1/2,	
22.	(a) .	1/2	3
	(b)	1	
	P	. 1	13
я	(c)	. 1	
	(नोट : तीर का निशान न दिखाने पर कुल 1/2 अंक काटें)		3
23.	(a) (i) गैल्वैनोमीटर की सुई में बाँई / दाँई ओर अल्पकालिक विक्षेपण		¥.
		1/2	

	The Administration of		
	अल्पकालिक विक्षेपण	1/2	
	(iii) विक्षेपण नहीं	1/2	
	(b) वैद्युतचुम्बकीय प्रेरण	1/2	
	(c) किसी कुंडली के सापेक्ष चुम्बक में गति कराने पर	1 1	3
24.	कुंडली में प्रेरित विद्युत धारा उत्पन्न होती है ।		-
	(a) निकट दृष्टिदोष	1/2	
749	(b) अवतल लेंस / अपसारी लेंस	1/2	
	(c) नेत्र लेंस की अत्यधिक वक्रता	1/2 +	
	नेत्र गोलक का आकार बढ़ जाना	1/2	
	(d) P (D) = 1/f (ਸੀਟर)		
	$P(D) = \frac{1}{-2.5(m)} = \frac{10}{-25} = \frac{2}{-5} = -0.4D$	1	6 _
	(नोट :-मात्रक न लिखने पर 1/2 अंक काटें) अथवा		
	(a) कोहरा और धुंध में लाल रंग का प्रकीर्णन सबसे कम होता है अतः दूर से दिखाई देता है	1	
	(b) वायुमंडल (माध्यम) की अनुपस्थिति के कारण प्रकाश का प्रकीर्णन नहीं होता है	1	
	(c) वायुमंडलीय अपवर्तन के कारण वास्तविक तथा आभासी सूर्यास्त में दो मिनट का अंतर होता है ।	1 .	3
77 <u>4</u> 0.45	खण्ड – ग		
. 25.	अयस्क X के लिए →िनस्तापन / वायु की सीमित उपस्थिति/अनुपस्थिति में तापन तापन	1/2	
	$ZnCO_{3(s)} \longrightarrow ZnO_{(s)} + CO_{2(g)}$	1	
	अयस्क Y के लिए → भर्जन / वायु की उपस्थिति में तापन	1/2	
	$2ZnS_{(s)} +3O_{2(g)} \longrightarrow 2ZnO_{(s)} +2SO_{2(g)}$	1	
	कार्बन जैसे उपयुक्त अपचायक का उपयोग कर धातु ऑक्साइड का अपचयन	1	
	$ZnO_{(s)}+C+_{(s)} \longrightarrow Zn_{(s)}+CO_{(g)}$	1	
	(नोट – किसी अन्य उदाहरण को भी ले सकते हैं) अथवा	-	
8	(a) कुना - उ.न.ए वातुर		
-	ज्याहि के एसंख आस्तोक्षय कोच्या सहकृत को जिल्लान टेक अध्यक्त (संतर एक)	1	
	 अशुद्ध कॉपर को ऐनोड बनाते है और शुद्ध कॉपर की पतली परत को कैथोड बनाते है । 	1/2	

	• अम्लीय कॉपर सल्फेट विलयन को विद्युत अपघट्य के	1/2	
	रूप में लेते हैं । (नोट : नामांकित चित्र पर भी पूर्ण अंक दें) विघुत घारा प्रवाहित करने पर ऐनोड पर स्थित अशुद्ध धातु अपघट्य में घुल जाती है और उतनी ही शुद्ध	1	
	धातु कैथोड पर विक्षेपित हो जाती है ।	事ノつ	-
	(b) • Fe2O3 और एल्यूमिनियम पाउडर की अभिक्रिया में उत्पन्न गलित आयरन से रेल पटिरयों कें की दरारों	1/2	
	को भरना • थर्मिट अभिक्रिया / प्रक्रिया	1/2	
		7	5
	Fe ₂ O _{3(s)} +2Al _(s) → '2Fe(l)+Al ₂ O3 _(s) + ऊष्मा		No.
26.	(a) दो या दो से अधिक संरचनाओं को समान अणुसूत्र से दिखाने वाली प्रक्रिया समावयवता कहलाती है	1	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1+1	
			30 - 20
2	ब्यूटेन आईसो ब्यूटेन	4	13
	(b) 'X' एक असंतृप्त कार्बन यौगिक है (c) आक्सीकारक	1	5
27.	(a) क्योंकि निलय को शरीर के दूर के अनेको अंगों तक		
	रूधिर पंप करना होता है ।	1	
	(b) क्योंकि उनकी ऊर्जा आवश्यक्ता कम होती है ।	1	
	(c) जलीय कशेरूकी जन्तुओं में परिवहन चक्र में रूधिर		4.7
	केवल एक बार हृदय में जाता है जबिक स्थलीय	1	
	कशेरूकीयों में रूधिर दो बार हृदय में जाता है।		
	(d) दिन के समय वाष्पोत्सर्जन चूषण बल अधिक होता है।	1	
	(e) रूधिर के प्रवाह को विपरीत दिशा में जाने से रोकना/ रूधिर केवल एक दिशा में बहे ।	1	5
28.	(a)		
	A	1/2	
	 A → मूत्रवाहिनी 	4 /0	1
	 A	1/2	
E.	 B —→ शुक्राशय 	1/2	
v	 B → शुक्राशय C → मूत्रमार्ग 		
v	 B → शुक्राशय C → मूत्रमार्ग 	1/2	
E .	 B → शुक्राशय C → मूत्रमार्ग D → शुक्रवाहिनी 	1/2 1/2	
<i>v</i>	 B → शुक्राशय C → मूत्रमार्ग D → शुक्रवाहिनी (b) टेस्टोस्टेरोन भूमिका 	1/2 1/2 1 1 1/2	
E .	 B	1/2 1/2	a
	 B → शुक्राशय C → मूत्रमार्ग D → शुक्रवाहिनी (b) टेस्टोस्टेरोन भूमिका शुक्राणु उत्पादन का नियंत्रण 	1/2 1/2 1 1 1/2	
	 B → शुक्राशय C → मूत्रमार्ग D → शुक्रवाहिनी (b) टेस्टोस्टेरोन भूमिका शुक्राणु उत्पादन का नियंत्रण किशोर बालक में यौवनारम्भ के समय दिखने वाले 	1/2 1/2 1 1 1/2	

	 'C' का कार्य: शुक्राणु और मूत्र दोनों के लिए उभयमार्ग प्रदान करना । अथवा 	1/2	
	(a) • पुनरूदभवन (पुनर्जनन)— शरीर के क्षत—विक्षत टुकडे वृद्धि कर पूर्ण जीव में विकसित हो जाते हैं ।	1/2 1/2	
6	 मुकुलन — अनुकूल परिस्थितियों में मातृ शरीर में एक छोटा उमार विकसित होकर नन्हें जीव में बदल जाता है । 	1/2 1/2	
	 बीजाणु समासंघ — बीजाणु की बाहरी मोटी भित्ति प्रतिकूल परिस्थिति में उसकी रक्षा करती है। 	1/2 1/2	
	(b) पत्तियों की कोर पर कलिकाएं विकसित होकर नए पौधे को उत्पन्न करती हैं ।	1	8 9
Q.	(c) लाभ :- • पुष्पविहीन पौधों में प्रवर्धन • उत्पन्न पौधे आनुवंशिक रूप से जनक पौधे के समान • कायिक प्रवर्धन से उत्पन्न पौधों में बीजों द्वारा उत्पन्न पौधों की अपेक्षा	1/2 ,1/2	27
	पुष्प और फल कम समय में लगने लगते हैं । (कोई दो)		5
29.	$(a) I_1 = \frac{P_1}{V}$	1/2	
	$I_{1} = \frac{100 \text{ W}}{220 \text{ V}} = \frac{10}{22} \text{ A}$ $I_{2} = \frac{P_{2}}{V} = \frac{10}{220} = \frac{1}{22} \text{ A}$	1/2	
	$I = I_1 + I_2$ $= \left(\frac{10}{22} + \frac{1}{22}\right) A = \frac{11}{22} A = 0.5 A$	1	3
Si	(b)		
	I	1/2	
Œ	पार्श्वक्रम संयोजन		

15.	1 1 1 0 35L	1-2	in in
	श्रेणीक्रम संयोजन (ii) कुल $R=R_1+R_2=2+3=5$ Ω		
	$I = \frac{V}{R_{net}} = \frac{5}{5} = 1A .$	1	
	3Ω प्रतिरोध के सिरों पर विभवान्तर $V = 1 \times 3 = 3V$	1/2	5
30.	(a)	12	
	आपतित किरण		
B	अववर्तित किरण	2	8
	पार्च विस्थापन		¥ 11
	नोट : तीर न दिखाने पर 1/2 अंक कार्टे)		
	(b)		51
	$n_{ga} = \frac{\text{Speed of light in air}}{\text{Speed of light in glass}} = \frac{3 \times 10^8}{2 \times 10^8} = \frac{3}{2} = 1.5$	1/2 × 3	
	(c)	,	
	$f(m) = \frac{1}{P(D)}$	1/2	
	$f(m) = \frac{1}{P(D)}$ $f = \frac{1}{P} = \frac{1}{-2.5D} = \frac{-10}{25D} = -0.4m$	1/2 +	
\$1	(नोट : मात्रक न लिखने पर 1/2 अंक काटें) अथवा		
	(a) $f(m) = \frac{1}{P(D)}$	1/2	
	$f = \frac{1}{-2.5D} = \frac{-10}{25D} = -0.4m = -40cm$	1	
	f=-40 cm v =-10 cm u = ?		
	$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$	1/2	
	$\frac{1}{-10 \text{ cm}} - \frac{1}{u} = \frac{1}{-40 \text{ cm}}$	12	

*	$-\frac{1}{u} = \frac{1}{-40} + \frac{1}{10}$	1	- 1
	$=\frac{-1+4}{40}=\frac{3}{40}$	n / -	
	$\therefore u = -\frac{40}{3} = -13.3 \text{ cm}$	1/2	
	(b) चूंकि क्षमता -ve है, प्रयुक्त लेंस अवतल/अभिसारी है	1/2	
=	F 8A	1	19
8	OA = v = -10cm OB = u = -13.3 cm OF = f = -40 cm		5