MARKING SCHEME

SAMPLE PAPER 1

SECTION A

Q.No.	Value Point	Marks
1(i)	D	1
(ii)	B OR A	1
(iii)	В	1
(iv)	С	1
2(i)	В	1
(ii)	A	1
(iii)	A	1
(iv)	A or B	1
3	C	1
4	D or C	1
5	С	1
6	B OR B	1
7	B OR D	1
8	A OR A	1
9	C	1
10	A	1
11	A	1
12	A	1
13	D	1
14	B OR B	1
15	В	1
16	A	1

SECTION B, C, D

Q.No.	VALUE POINTS	MARKS	
	SECTION B		
17	Nitro group at ortho position withdraws the electron density from the benzene ring	2	
	and thus facilitates the attack of the nucleophile on haloarene.		
	$\begin{array}{c c} Cl & O \\ OH + & OH \end{array} \xrightarrow{Slow step} \begin{bmatrix} Cl & OH \\ OH & OH \end{array} \xrightarrow{Slow step} \begin{bmatrix} Cl & OH \\ OH & OH \end{array} \xrightarrow{OH} OH $		
	$\equiv \bigoplus_{\mathbb{P}^{\bullet}} \bigoplus_{\mathbb{P}^{\bullet}} \bigoplus_{\mathbb{P}^{\bullet}} \bigoplus_{\mathbb{P}^{\bullet}} + Cl^{\Theta}$		
	OR		

	(i) NH_2 N_2Cl Cl Cu_2Cl_2 Cu_2Cl_2	1
	(ii) CH ₃ CH(Br)CH ₃ alc KOH CH ₃ CH=CH ₂ HBr, organic peroxide CH ₃ CH ₂ CH ₃ Br	1
18	$\begin{array}{ll} \Delta Tb = K_f m & \Delta Tb &= 101.04\text{-}100 = 1.04^{\circ}\text{C} \\ \text{or } m = 1.04/0.52 = 2 \\ \text{Relative lowering of } VP = x2 \\ \text{Relative lowering of } VP = n2/n1 + n2 \\ = 2/\ 2 + 55.5 = 2/57.5 = 0.034 \ \text{atm} \end{array}$	1 1/2 1/2
19	(i) $t_{2g}^4 e_g^2$ Paramagentic (ii)Dichloridobis(ethane-1,2-diamine)cobalt(III)nitrate OR (i)Square planar (ii)Cu ²⁺ = 3d ⁹ 1 unpaired electron so $\sqrt{1(3)} = 1.73BM$	1 1 1
20	Reaction is a complex reaction. Order of reaction is 1.5. Molecularity cannot be 1.5, it has no meaning for this reaction. The reaction occurs in steps, so it is a complex reaction. (ii)units of k are $\text{mol}^{-1/2}L^{1/2}s^{-1}$ OR Ans: let the rate law expression be Rate = k [P] ^x [Q] ^y from the table we know that Rate 1 = $3.0 \times 10^{-4} = k (0.10)^x (0.10)^y$ Rate $2 = 9.0 \times 10^{-4} = k (0.30)^x (0.30)^y$ Rate $3 = 3.0 \times 10^{-4} = k (0.10)^x (0.30)^y$	1/2 1/2 1
	Rate 1/ Rate $3 = (1/3)^y$ or $1 = (1/3)^y$ So $y = 0$ Rate 2/ Rate $3 = (3)^x$ or $3 = (3)^x$ So $x = 1$ Rate = k [P]	1/ ₂ 1/ ₂ 1
21	$\begin{array}{l} k = 0.693/t_{1/2} \\ k = 0.693/5730 \ years^{-1} \\ t = \underline{2.303} \ log \ \underline{Co} \\ k \qquad Ct \\ let \ Co = 1 \ Ct = 3/10 \qquad so \ Co/Ct = 1/\left(3/10\right) = 10/3 \end{array}$	1/2
	$t = 2.303 \times 5730 \log \frac{10}{3}$ 0.693×3 $t = 19042 \times (1-0.4771) = 9957 \text{ years}$	1/2

22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$CH_{3} - CH - CH - CH_{3} \xrightarrow{-H_{2}O} CH_{3} - CH - \overset{+}{C}H - CH_{3}$ $CH_{3} - CH - CH_{3} \xrightarrow{-H_{2}O} CH_{3}$	1/2
	$CH_{3} - C - CH_{3} \xrightarrow{+} CH_{3} CH_{3} \xrightarrow{+} CH_{3} - CH_{3} CH_{3}$ $CH_{3} - CH_{3} CH_{3}$ $CH_{3} - CH_{3} CH_{3}$	1/2
	$CH_{3} - \overset{+}{C} - CH_{2} - CH_{3} \qquad Br^{-} \longrightarrow CH_{3} - \overset{Br}{C} - CH_{2} - CH_{3}$ $CH_{3} \qquad CH_{3}$	1/2
23	XeF ₆	1
	. Central atom Xe has 8 valence electrons, it forms 6 bonds with F and has	
	1 lone pair. According to VSEPR theory, presence of 6 bp and 1 lp results in distorted octahedral geometry	1
	F F F	
24.	(a)inverted product will be given by 1 Chlorobutane as it undergoes ${S_N}^2$ reaction.	1/2+1/2
	(b)racemic mixture will be given by 2 chloro-2-methylpropane as it undergoes S_N^{1} reaction	1/2+1/2
25	Let no. of Atoms of element P be x	
	No. of tetrahedral voids = $2x$	1/2
	No. Of octahedral voids $= x$	
	Atoms of Q = $1/3 (2x) + x = 5x/3$	1/2
	$P_xQ_{5x/3}$	1
	P_3Q_5	1

	SECTION C	
26		
	(i)Due to large surface area and ability to show variable oxidation states	1
	(ii)Due to high value of third ionisation enthalpy	1
	(iii) Oxidation state of Cr in Cr_2O_3 is +3 and of CrO is +2. When oxidation number	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
	of a metal increases, ionic character decreases so CrO is basic while Cr ₂ O ₃ is	1
	amphoteric. OR	
	(i) The general trend towards less negative E V values across the series is	1
	- · · · · · · · · · · · · · · · · · · ·	1
	related to the general increase in the sum of the first and second	
	ionisation enthalpies.	1
	(ii) The high energy to transform Cu(s) to Cu2+(aq) is not balanced by its	1
	hydration	
	enthalpy.	
	(iii) The stability of the half-filled d sub-shell in Mn^{2+} and the completely	1
	filled d^{10} configuration in Zn^{2+} are related to their more negative E^{o} V	
	values	
7	(i) Aniline, <i>N</i> -ethylethanamine Etanamine	1
	(ii)Ethanamine,ethanol, ethanoic acid	1
	(iii) N, N dimethylmethanamine, methanamine, N-methylmethanamine	1
	OR	
	(i) N-methyletahnamine is a secondary amine. When it reacts with	1
	benzenesulphonyl chloride, it forms N- Ethyl -N methyl sulphonamide while and	
	N,N-dimethyl etahnanmine is a tertiary amine it does not react with	
	benzenesulphonyl chloride.	
	benzenesurphonyr emoride.	
	(ii) NO ₂ NH ₂ NH ₂	
	Br Br	1
	$H_2/N_1 \longrightarrow H_2/N_1 \longrightarrow Br_2/H_2O \longrightarrow O$	1
	Br	1./
		1/2
	(iii)Butan-1-ol	
	Alcohol forms stronger hydrogen bonds with water than formed by amine due to	1/2
	higher electronegativity of O in alcohol than N in amine	
		1
3	We know that $d = zM/N_a a^3$	1/2
	For fcc, z=4 therefore $d = 4 \times M / Na (3.5 \times 10^{-8})^3 \text{ g/cm}^3$	1
	For bcc, z=2 therefore d' = $2 \times M / Na (3.0 \times 10^{-8})^3 \text{ g/cm}^3$	1
	$d/d' = 4/(3.5 \times 10^{-8})^3 / 2/(3.0 \times 10^{-8})^3 = 3.17:1$	1/2
)	(i)	
	CH_3 CH_2 - $COOH$ $(CH_2)_4$ - NH_2	1
		I

	CU-COOU CU- (CU-), NU-	
	CH ₂ COOH CH ₃ (CH ₂) ₄ - NH ₂	1
	HOOC —CH— NHOC— CH—NHOC— CH— NH ₂	
	(ii) H H ₃ N-C-COO- CH ₃	1
30	i. Arrange the following in decreasing order of bond dissociation enthalpy	1
	$I_2 < F_2 < Br_2 < Cl_2$, ii. Bi does not form $p\pi$ - $p\pi$ bonds as its atomic orbitals are large and diffuse so effective overlapping is not possible iii.Due to small size of oxygen, it has greater electron electron repulsions	1
	SECTION D	1
31.	(i)	
	(a) $3\text{Cu} + 8 \text{ HNO}_3(\text{dilute}) \rightarrow 3\text{Cu}(\text{NO}_3)_2 + 2\text{NO} + 4\text{H}_2\text{O}$ (b)	1
	F CI—F	1
		1
	(ii) 'X' is Helium It is used as a diluent for oxygen in modern diving apparatus because of its very	1
	low solubility in blood.	1
	It monoatomic having no interatomic forces except weak dispersion forces and has second lowest mass therefore bp is lowest.	1
	OR	
	(a) H_2 Te, H_2 Se, H_2 S, H_2 O	1
	(b) [Fe (H ₂ O) ₅ (NO)] ²⁺	1
	(ii) A is chlorine gas	1
	Its bleaching action is due to oxidation. $Cl_2 + H_2O \rightarrow 2HCl + O$, Coloured substance $+ O \rightarrow Colourless$ substance	1
	$6 \text{ NaOH} + 3\text{Cl}_2 \rightarrow 5\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O}$	1
36		

	(ii) (a) CH ₂ OH CH ₂ Cl CH ₂ CN CH ₂ COOH SOCl ₂ SOCl ₂ CH ₃ CH(OH)CH ₃ H ₂ SO ₄ CH ₃ CH=CH ₂ (c) COCH ₃ COCH ₃ COCH ₃ COCH ₃ CH ₃ COCl ₄ anhy AlCl ₃ H ₂ SO ₄ CH ₃ CSO ₄ ONO ₂	1 1 1
37	(i) limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte. (ii) E^{o} cell = E^{o} cathode - E^{o} anode = 0.34-(-1.66) = 2.00 V Ecell = E^{o} cell - $\frac{0.059}{0.059} log \frac{[Al^{3+}]^2}{n} \frac{[Cu^{2+}]^3}{[Cu^{2+}]^3}$ Here n = 6 Ecell = $2 - \frac{0.059}{6} log \frac{[0.15]^2}{[0.025]^3}$ = $2 - 0.059/6$ ($2log 0.15 - 3 log 0.025$) = $2 - 0.059/6$ ($-1.6478 + 4.8062$) = $-2.00311 = 1.9689$ V	1 1/2 1 1/2 1
	\mathbf{OR} (i) $\mathrm{MnO_4}^-$	1
	(ii)(a) Molar conductivity of a solution at a given concentration is the conductance of the volume V of solution containing one mole of electrolyte kept between two	1
	electrodes with area of cross section A and distance of unit length. (b)Strong electrolyte, For strong electrolytes, Λm increases slowly with dilution	1
	(c) $\Delta m = \Delta m^{\circ} - A c \frac{1}{2}$ Therefore $\Delta m^{\circ} = 150 \text{ S cm}^2 \text{ mol}^{-1}$	1
	(d)	1

