MARKING SCHEME

SAMPLE PAPER 1

SECTION A

Q.No.	Value Point	Marks
1(i)	D	1
(ii)	B OR A	1
(iii)	B	1
(iv)	C	1
2 (i)	B	1
(ii)	A	1
(iii)	A	1
(iv)	A or B	1
3	C	1
4	D or C	1
5	C	1
6	B OR B	1
7	B OR D	1
8	A OR A	1
9	C	1
10	A	1
11	A	1
12	A	1
13	D	1
14	B OR B	1
15	B	1
16	A	1

SECTION B, C, D

| Q.No. | VALUE POINTS | MARKS |
| :--- | :--- | :--- | :--- |
| SECTION B | | |
| and thus facilitates the attack of the nucleophile on haloarene. | | |
| and | | |
| | | |

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
(i) \\
(ii) \(\underset{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{Br}}{\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}} \xrightarrow{\text { alc } \mathrm{KOH}} \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow{\mathrm{HBr} \text {, organic peroxide }}\)
\end{tabular} \& 1

1

\hline 18 \& $$
\begin{aligned}
& \Delta \mathrm{Tb}=\mathrm{K}_{\mathrm{f}} \mathrm{~m} \quad \Delta \mathrm{~Tb}=101.04-100=1.04^{\circ} \mathrm{C} \\
& \text { or } \mathrm{m}=1.04 / 0.52=2 \\
& \text { Relative lowering of } \mathrm{VP}=\mathrm{x} 2 \\
& \text { Relative lowering of } \mathrm{VP}=\mathrm{n} 2 / \mathrm{n} 1+\mathrm{n} 2 \\
& =2 / 2+55.5=2 / 57.5=0.034 \mathrm{~atm}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1 \\
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\]

\hline 19 \& | (i) $\mathrm{t}_{2 \mathrm{~g}}{ }^{4} \mathrm{e}_{\mathrm{g}}{ }^{2}$ Paramagentic |
| :--- |
| (ii)Dichloridobis(ethane-1,2-diamine)cobalt(III)nitrate OR |
| (i)Square planar |
| (ii) $\mathrm{Cu}^{2+}=3 \mathrm{~d}^{9} 1$ unpaired electron so $\sqrt{ } 1(3)=1.73 \mathrm{BM}$ | \& \[

$$
\begin{aligned}
& \hline 1 / 2,1 / 2 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$
\]

\hline 20 \& | Reaction is a complex reaction. |
| :--- |
| Order of reaction is 1.5 . |
| Molecularity cannot be 1.5 , it has no meaning for this reaction. The reaction occurs in steps, so it is a complex reaction. |
| (ii) units of k are $\mathrm{mol}^{-1 / 2} \mathrm{~L}^{1 / 2} \mathrm{~s}^{-1}$ |
| OR |
| Ans : let the rate law expression be Rate $=k[P]^{x}[Q]^{y}$ |
| from the table we know that |
| Rate $1=3.0 \times 10^{-4}=\mathrm{k}(0.10)^{\mathrm{x}}(0.10)^{\mathrm{y}}$ |
| Rate $2=9.0 \times 10^{-4}=\mathrm{k}(0.30)^{\mathrm{x}}(0.30)^{\mathrm{y}}$ |
| Rate $3=3.0 \times 10^{-4}=\mathrm{k}(0.10)^{\mathrm{x}}(0.30)^{\mathrm{y}}$ |
| Rate $1 /$ Rate $3=(1 / 3)^{y}$ or $1=(1 / 3)^{y}$ $\text { So } y=0$ |
| Rate $2 /$ Rate $3=(3)^{x}$ or $3=(3)^{x}$ |
| So $\mathrm{x}=1$ |
| Rate $=k[P]$ | \& | $1 / 2$ |
| :--- |
| 1/2 |
| 1 |
| $1 / 2$ |
| $1 / 2$ |
| 1 |

\hline 21 \& \[
$$
\begin{aligned}
& \mathrm{k}=0.693 / \mathrm{t}_{1 / 2} \\
& \mathrm{k}=0.693 / 5730 \text { years }^{-1} \\
& \mathrm{t}=\underline{2.303} \log \frac{\mathrm{Co}}{\mathrm{Ct}} \\
& \text { let } \mathrm{Co}=1 \mathrm{Ct}=3 / 10 \quad \text { so } \mathrm{Co} / \mathrm{Ct}=1 /(3 / 10)=10 / 3 \\
& \mathrm{t}=\underline{2.303} \times 5730 \log \frac{10}{3} \\
& \mathrm{t}=19042 \times(1-0.4771)=9957 \text { years }
\end{aligned}
$$

\] \& | $1 / 2$ |
| :--- |
| $1 / 2$ |
| $1 / 2$ |
| 1 |

\hline
\end{tabular}

22		$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
23	XeF_{6} . Central atom Xe has 8 valence electrons, it forms 6 bonds with F and has 1 lone pair. According to VSEPR theory, presence of 6 bp and 1 lp results in distorted octahedral geometry	
24.	(a)inverted product will be given by 1 Chlorobutane as it undergoes $\mathrm{S}_{\mathrm{N}}{ }^{2}$ reaction. (b)racemic mixture will be given by 2 chloro-2-methylpropane as it undergoe $\mathrm{S}_{\mathrm{N}}{ }^{1}$ reaction	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
25	Let no. of Atoms of element P be x No. of tetrahedral voids $=2 \mathrm{x}$ No. Of octahedral voids $=x$ $\begin{aligned} & \text { Atoms of } \mathrm{Q}=1 / 3(2 \mathrm{x})+\mathrm{x}=5 \mathrm{x} / 3 \\ & \mathrm{P}_{x} \mathrm{Q}_{5 \mathrm{x} / 3} \\ & \mathrm{P}_{3} \mathrm{Q}_{5} \end{aligned}$	$1 / 2$ $1 / 2$ 1

\begin{tabular}{|c|c|c|}
\hline \& \& \\
\hline \multicolumn{3}{|c|}{SECTION C} \\
\hline 26 \& \begin{tabular}{l}
(i)Due to large surface area and ability to show variable oxidation states \\
(ii)Due to high value of third ionisation enthalpy \\
(iii) Oxidation state of Cr in \(\mathrm{Cr}_{2} \mathrm{O}_{3}\) is +3 and of CrO is +2 . When oxidation number of a metal increases, ionic character decreases so CrO is basic while \(\mathrm{Cr}_{2} \mathrm{O}_{3}\) is amphoteric. \\
OR \\
(i) The general trend towards less negative \(E \mathrm{~V}\) values across the series is related to the general increase in the sum of the first and second ionisation enthalpies. \\
(ii) The high energy to transform \(\mathrm{Cu}(\mathrm{s})\) to \(\mathrm{Cu} 2+(\mathrm{aq})\) is not balanced by its hydration enthalpy. \\
(iii) The stability of the half-filled \(d\) sub-shell in \(\mathrm{Mn}^{2+}\) and the completely filled \(d^{10}\) configuration in \(\mathrm{Zn}^{2+}\) are related to their more negative \(E^{o} \mathrm{~V}\) values
\end{tabular} \& 1
1
1

1
1
1
1

\hline 27 \& | (i) Aniline, N-ethylethanamine Etanamine |
| :--- |
| (ii)Ethanamine,ethanol, ethanoic acid |
| (iii) N, N dimethylmethanamine, methanamine, N -methylmethanamine |
| OR |
| (i) N -methyletahnamine is a secondary amine. When it reacts with benzenesulphonyl chloride, it forms N - Ethyl - N methyl sulphonamide while and N, N-dimethyl etahnanmine is a tertiary amine it does not react with benzenesulphonyl chloride. |
| (ii) |
| (iii)Butan-1-ol |
| Alcohol forms stronger hydrogen bonds with water than formed by amine due to higher electronegativity of O in alcohol than N in amine | \& 1

\hline 28 \& | We know that $\mathrm{d}=\mathrm{zM} / \mathrm{N}_{\mathrm{a}} \mathrm{a}^{3}$ |
| :--- |
| For fcc, $\mathrm{z}=4$ therefore $\mathrm{d}=4 \times \mathrm{M} / \mathrm{Na}\left(3.5 \times 10^{-8}\right)^{3} \mathrm{~g} / \mathrm{cm}^{3}$ |
| For bcc, $\mathrm{z}=2$ therefore $\mathrm{d}^{\prime}=2 \times \mathrm{M} / \mathrm{Na}\left(3.0 \times 10^{-8}\right)^{3} \mathrm{~g} / \mathrm{cm}^{3}$ $\mathrm{d} / \mathrm{d}=4 /\left(3.5 \times 10^{-8}\right)^{3} / 2 /\left(3.0 \times 10^{-8}\right)^{3}=3.17: 1$ | \& \[

$$
\begin{aligned}
& \hline 1 / 2 \\
& 1 \\
& 1 \\
& 1 / 2
\end{aligned}
$$
\]

\hline 29 \& (i) \& 1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
 \\
(ii)
\end{tabular} \& 1

1

\hline 30 \& | i. Arrange the following in decreasing order of bond dissociation enthalpy $\mathrm{I}_{2}<\mathrm{F}_{2}<\mathrm{Br}_{2}<\mathrm{Cl}_{2},$ |
| :--- |
| ii. Bi does not form $\mathrm{p} \pi-\mathrm{p} \pi$ bonds as its atomic orbitals are large and diffuse so effective overlapping is not possible |
| iii.Due to small size of oxygen, it has greater elecrton electron repulsions | \& 1

1
1

\hline \multicolumn{3}{|c|}{SECTION D}

\hline 31. \& | (i) |
| :--- |
| (a) $3 \mathrm{Cu}+8 \mathrm{HNO}_{3}$ (dilute) $\rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$ |
| (b) |
| (ii) ' X ' is Helium |
| It is used as a diluent for oxygen in modern diving apparatus because of its very low solubility in blood. |
| It monoatomic having no interatomic forces except weak dispersion forces and has second lowest mass therefore bp is lowest. |
| OR |
| (a) $\mathrm{H}_{2} \mathrm{Te}, \mathrm{H}_{2} \mathrm{Se}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}$ |
| (b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NO})\right]^{2+}$ |
| (ii) A is chlorine gas |
| Its bleaching action is due to oxidation. $\begin{gathered} \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\rightarrow} 2 \mathrm{HCl}+\mathrm{O}, \text { Coloured substance }+\mathrm{O} \rightarrow \text { Colourless substance } \\ 6 \mathrm{NaOH}+3 \mathrm{Cl}_{2} \rightarrow 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O} \end{gathered}$ | \& 1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

\hline 36 \& \&

\hline
\end{tabular}

(

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
(ii) \\
(b) \(\mathrm{CH}_{3} \mathrm{COCH}_{3} \xrightarrow{\mathrm{H}_{2}, \mathrm{Pd}} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}\) \\
(c)
\end{tabular} \& 1

1
1
1

\hline 37 \& | (i) limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte. |
| :--- |
| (ii) E^{o} cell $=\mathrm{E}^{\mathrm{o}}$ cathode $-\mathrm{E}^{\mathrm{o}}$ anode $=0.34-(-1.66)=2.00 \mathrm{~V}$ |
| Ecell $=\mathrm{E}^{\mathrm{o}}$ cell $-\frac{0.059}{\mathrm{n}} \log \frac{\left[\mathrm{Al}^{3+}\right]^{2}}{\left[\mathrm{Cu}^{2+}\right]^{3}}$ |
| Here $\mathrm{n}=6$ $\begin{aligned} \text { Ecell } & =2-\frac{0.059}{6} \log \frac{[0.15]^{2}}{[0.025]^{3}} \\ & =2-0.059 / 6(2 \log 0.15-3 \log 0.025) \\ & =2-0.059 / 6(-1.6478+4.8062)=2-0.0311=1.9689 \mathrm{~V} \end{aligned}$ |
| OR |
| (i) MnO_{4}^{-} |
| (ii)(a) Molar conductivity of a solution at a given concentration is the conductance of the volume V of solution containing one mole of electrolyte kept between two electrodes with area of cross section A and distance of unit length. |
| (b)Strong electrolyte, For strong electrolytes, Λm increases slowly with dilution |
| (c) $\Lambda m=\Lambda m^{\circ}-A c^{1 / 2}$ |
| Therefore $\Lambda m^{\circ}=150 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ |
| (d) | \& 1

$1 / 2$
1
$1 / 2$
1
1
1
1
1
1
1
1
1
1

\hline
\end{tabular}

