Exercise 4.1

Question 1:

Evaluate the determinants in Exercises 1 and 2.
$\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|$
Answer
$\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|=2(-1)-4(-5)=-2+20=18$

Question 2:

Evaluate the determinants in Exercises 1 and 2.
(i) $\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \ldots .-\cap & \ldots-\Omega\end{array}\right|$ (ii)
$\left\lvert\, \begin{array}{cc}x^{2}-x+1 & x-1 \\ \ldots .1 & \ldots .1\end{array}\right.$
(i) $\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|=(\cos \theta)(\cos \theta)-(-\sin \theta)(\sin \theta)=\cos ^{2} \theta+\sin ^{2} \theta=1$
(ii) $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$
$=\left(x^{2}-x+1\right)(x+1)-(x-1)(x+1)$
$=x^{3}-x^{2}+x+x^{2}-x+1-\left(x^{2}-1\right)$
$=x^{3}+1-x^{2}+1$
$=x^{3}-x^{2}+2$

Question 3:

If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$, then show that $|2 A|=4|A|$
Answer
The given matrix is $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$.
$\therefore 2 A=2\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right]$
\therefore L.H.S. $=|2 A|=\left|\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right|=2 \times 4-4 \times 8=8-32=-24$
Now, $|A|=\left|\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right|=1 \times 2-2 \times 4=2-8=-6$
\therefore R.H.S. $=4|A|=4 \times(-6)=-24$
\therefore L.H.S. $=$ R.H.S.

Question 4:

If $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$, then show that $|3 A|=27|A|$.
Answer

The given matrix is

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 4
\end{array}\right]
$$

It can be observed that in the first column, two entries are zero. Thus, we expand along the first column $\left(C_{1}\right)$ for easier calculation.
$|\mathrm{A}|=1\left|\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right|-0\left|\begin{array}{ll}0 & 1 \\ 0 & 4\end{array}\right|+0\left|\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right|=1(4-0)-0+0=4$
$\therefore 27|\mathrm{~A}|=27(4)=108$
Now, $3 \mathrm{~A}=3\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]=\left[\begin{array}{ccc}3 & 0 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 12\end{array}\right]$
$\therefore|3 \mathrm{~A}|=3\left|\begin{array}{cc}3 & 6 \\ 0 & 12\end{array}\right|-0\left|\begin{array}{cc}0 & 3 \\ 0 & 12\end{array}\right|+0\left|\begin{array}{ll}0 & 3 \\ 3 & 6\end{array}\right|$

$$
\begin{equation*}
=3(36-0)=3(36)=108 \tag{ii}
\end{equation*}
$$

From equations (i) and (ii), we have:
$|3 A|=27|A|$

Hence, the given result is proved.

Question 5:
Evaluate the determinants
(i) $\left|\begin{array}{ccc}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|_{\text {(iii) }}\left|\begin{array}{ccc}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right|$
(ii) $\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3\end{array}\right|$ (iv)
$\left\lceil\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1\end{array}\right.$ Answer
(i) Let $A=\left|\begin{array}{ccc}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$.

It can be observed that in the second row, two entries are zero. Thus, we expand along the second row for easier calculation.
$|A|=-0\left|\begin{array}{cc}-1 & -2 \\ -5 & 0\end{array}\right|+0\left|\begin{array}{cc}3 & -2 \\ 3 & 0\end{array}\right|-(-1)\left|\begin{array}{cc}3 & -1 \\ 3 & -5\end{array}\right|=(-15+3)=-12$
(ii) Let $A=\left[\begin{array}{ccc}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right]$.

By expanding along the first row, we have:
$|A|=3\left|\begin{array}{cc}1 & -2 \\ 3 & 1\end{array}\right|+4\left|\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right|+5\left|\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right|$
$=3(1+6)+4(1+4)+5(3-2)$
$=3(7)+4(5)+5(1)$
$=21+20+5=46$
(iii) Let $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right]$.

By expanding along the first row, we have:
$|A|=0\left|\begin{array}{cc}0 & -3 \\ 3 & 0\end{array}\right|-1\left|\begin{array}{cc}-1 & -3 \\ -2 & 0\end{array}\right|+2\left|\begin{array}{cc}-1 & 0 \\ -2 & 3\end{array}\right|$
$=0-1(0-6)+2(-3-0)$
$=-1(-6)+2(-3)$
$=6-6=0$
(iv) Let $A=\left[\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right]$.

By expanding along the first column, we have:
$|A|=2\left|\begin{array}{cc}2 & -1 \\ -5 & 0\end{array}\right|-0\left|\begin{array}{cc}-1 & -2 \\ -5 & 0\end{array}\right|+3\left|\begin{array}{cc}-1 & -2 \\ 2 & -1\end{array}\right|$

$$
=2(0-5)-0+3(1+4)
$$

$$
=-10+15=5
$$

Question 6:
If $A=\left[\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right]$, find $|\mathrm{A}|$.
Answer
Let $A=\left[\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right]$.
By expanding along the first row, we have:

$$
\begin{aligned}
|A| & =1\left|\begin{array}{ll}
1 & -3 \\
4 & -9
\end{array}\right|-1\left|\begin{array}{ll}
2 & -3 \\
5 & -9
\end{array}\right|-2\left|\begin{array}{ll}
2 & 1 \\
5 & 4
\end{array}\right| \\
& =1(-9+12)-1(-18+15)-2(8-5) \\
& =1(3)-1(-3)-2(3) \\
& =3+3-6 \\
& =6-6 \\
& =0
\end{aligned}
$$

Question 7:

Find values of x, if
$\left|\begin{array}{ll}2 & 4 \\ 2 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right| \quad\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{cc}x & 3 \\ 2 x & 5\end{array}\right|$
(i) (ii) Answer
(i) $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
$\Rightarrow 2 \times 1-5 \times 4=2 x \times x-6 \times 4$
$\Rightarrow 2-20=2 x^{2}-24$
$\Rightarrow 2 x^{2}=6$
$\Rightarrow x^{2}=3$
$\Rightarrow x= \pm \sqrt{3}$
(ii) $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$
$\Rightarrow 2 \times 5-3 \times 4=x \times 5-3 \times 2 x$
$\Rightarrow 10-12=5 x-6 x$
$\Rightarrow-2=-x$
$\Rightarrow x=2$

Question 8:

If $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$, then x is equal to
(A) 6 (B) ± 6 (C) -6 (D)

0 Answer
Answer: B
$\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$
$\Rightarrow x^{2}-36=36-36$
$\Rightarrow x^{2}-36=0$
$\Rightarrow x^{2}=36$
$\Rightarrow x= \pm 6$
Hence, the correct answer is B.

Exercise 4.2

Question 1:

Using the property of determinants and without expanding, prove that:

$$
\left|\begin{array}{lll}
x & a & x+a \\
y & b & y+b \\
z & c & z+c
\end{array}\right|=0
$$

Answer

$$
\left|\begin{array}{lll}
x & a & x+a \\
y & b & y+b \\
z & c & z+c
\end{array}\right|=\left|\begin{array}{lll}
x & a & x \\
y & b & y \\
z & c & z
\end{array}\right|+\left|\begin{array}{lll}
x & a & a \\
y & b & b \\
z & c & c
\end{array}\right|=0+0=0
$$

[Here, the two columns of the determinants are identical]

Question 2:

Using the property of determinants and without expanding, prove that:
$\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|=0$
Answer

$$
\Delta=\left|\begin{array}{lll}
a-b & b-c & c-a \\
b-c & c-a & a-b \\
c-a & a-b & b-c
\end{array}\right|
$$

Applying $R_{1} \rightarrow R_{1}+R_{2}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
a-c & b-a & c-b \\
b-c & c-a & a-b \\
-(a-c) & -(b-a) & -(c-b)
\end{array}\right| \\
& =-\left|\begin{array}{lll}
a-c & b-a & c-b \\
b-c & c-a & a-b \\
a-c & b-a & c-b
\end{array}\right|
\end{aligned}
$$

Here, the two rows R_{1} and R_{3} are identical.
$\therefore=0$.

Question 3:

Using the property of determinants and without expanding, prove that:
$\left|\begin{array}{lll}2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86\end{array}\right|=0$

Answer

2	7	$65 \quad 2$	7	$63+2$
3	8	$75=3$	8	$72+3$
5	9	865	9	$81+5$
2	7	$63 \quad 2$	7	2
$=3$	8	$72+3$	8	3
5	9	815	9	5
2	7	9(7)		
$=3$	8	$9(8)+0$		[Two columns are identical]
5	9	$9(9)$		
2	7	7		
$=93$	8	8		
5	9	9		
$=0$				[Two columns are identical]

Question 4:
Using the property of determinants and without expanding, prove that:
$\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|=0$
Answer
$\Delta=\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|$

By applying $C_{3} \rightarrow C_{3}+C_{2}$, we have:
$\Delta=\left|\begin{array}{lll}1 & b c & a b+b c+c a \\ 1 & c a & a b+b c+c a \\ 1 & a b & a b+b c+c a\end{array}\right|$
Here, two columns C_{1} and C_{3} are proportional.
$\therefore=0$.

Question 5:

Using the property of determinants and without expanding, prove that:
$\left|\begin{array}{lll}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y\end{array}\right|=2\left|\begin{array}{ccc}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$
Answer

$$
\begin{align*}
\Delta & =\left|\begin{array}{lll}
b+c & q+r & y+z \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right| \\
& =\left|\begin{array}{lll}
b+c & q+r & y+z \\
c+a & r+p & z+x \\
a & p & x
\end{array}\right|+\left|\begin{array}{lll}
b+c & q+r & y+z \\
c+a & r+p & z+x \\
b & q & y
\end{array}\right| \\
& =\Delta_{1}+\Delta_{2} \text { (say) } \tag{1}
\end{align*}
$$

Now, $\Delta_{1}=\left|\begin{array}{lll}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a & p & x\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{3}$, we have:
$\Delta_{1}=\left|\begin{array}{lll}b+c & q+r & y+z \\ c & r & z \\ a & p & x\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}-R_{2}$, we have:
$\Delta_{1}=\left|\begin{array}{lll}b & q & y \\ c & r & z \\ a & p & x\end{array}\right|$

Applying $R_{1} \leftrightarrow R_{3}$ and $R_{2} \leftrightarrow R_{3}$, we have:
$\Delta_{1}=(-1)^{2}\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|=\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$
$\Delta_{2}=\left|\begin{array}{lll}b+c & q+r & y+z \\ c+a & r+p & z+x \\ b & q & y\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}-R_{3}$, we have:
$\Delta_{2}=\left|\begin{array}{lll}c & r & z \\ c+a & r+p & z+x \\ b & q & y\end{array}\right|$
Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$, we have:
$\Delta_{2}=\left|\begin{array}{lll}c & r & z \\ a & p & x \\ b & q & y\end{array}\right|$
Applying $R_{1} \leftrightarrow R_{2}$ and $R_{2} \leftrightarrow R_{3}$, we have:
$\Delta_{2}=(-1)^{2}\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|=\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$
From (1), (2), and (3), we have:
$\Delta=2\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$
Hence, the given result is proved.

Question 6:

By using properties of determinants, show that:
$\left|\begin{array}{lll}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$

Answer
We have,
$\Delta=\left|\begin{array}{lll}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|$
Applying $\mathrm{R}_{1} \rightarrow c \mathrm{R}_{1}$, we have:
$\Delta=\frac{1}{c}\left|\begin{array}{lll}0 & a c & -b c \\ -a & 0 & -c \\ b & c & 0\end{array}\right|$
Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-b \mathrm{R}_{2}$, we have:

$$
\begin{aligned}
\Delta & =\frac{1}{c}\left|\begin{array}{lll}
a b & a c & 0 \\
-a & 0 & -c \\
b & c & 0
\end{array}\right| \\
& =\frac{a}{c}\left|\begin{array}{lll}
b & c & 0 \\
-a & 0 & -c \\
b & c & 0
\end{array}\right|
\end{aligned}
$$

Here, the two rows R_{1} and R_{3} are identical.
$\therefore \quad=0$.

Question 7:

By using properties of determinants, show that:
$\left|\begin{array}{lll}-a^{2} & a b & a c \\ b a & -b^{2} & b c \\ c a & c b & -c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$
Answer

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
-a^{2} & a b & a c \\
b a & -b^{2} & b c \\
c a & c b & -c^{2}
\end{array}\right| \\
& =a b c\left|\begin{array}{lll}
-a & b & c \\
a & -b & c \\
a & b & -c
\end{array}\right| \\
& \text { [Taking out factors } a, b, c \text { from } \mathrm{R}_{1}, \mathrm{R}_{2}, \text { and } \mathrm{R}_{3} \text {] } \\
& =a^{2} b^{2} c^{2}\left|\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right|
\end{aligned}
$$

Applying $R_{2} \rightarrow R_{2}+R_{1}$ and $R_{3} \rightarrow R_{3}+R_{1}$, we have:

$$
\begin{aligned}
\Delta & =a^{2} b^{2} c^{2}\left|\begin{array}{lll}
-1 & 1 & 1 \\
0 & 0 & 2 \\
0 & 2 & 0
\end{array}\right| \\
& =a^{2} b^{2} c^{2}(-1)\left|\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right| \\
& =-a^{2} b^{2} c^{2}(0-4)=4 a^{2} b^{2} c^{2}
\end{aligned}
$$

Question 8:

By using properties of determinants, show that:
(i) $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$
(ii) $\left|\begin{array}{lll}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$

Answer
(i)
Let $\Delta=\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$.

Applying $R_{1} \rightarrow R_{1}-R_{3}$ and $R_{2} \rightarrow R_{2}-R_{3}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
0 & a-c & a^{2}-c^{2} \\
0 & b-c & b^{2}-c^{2} \\
1 & c & c^{2}
\end{array}\right| \\
& =(c-a)(b-c)\left|\begin{array}{ccl}
0 & -1 & -a-c \\
0 & 1 & b+c \\
1 & c & c^{2}
\end{array}\right|
\end{aligned}
$$

Applying $R_{1} \rightarrow R_{1}+R_{2}$, we have:
$\begin{aligned} \Delta & =(b-c)(c-a)\left|\begin{array}{lll}0 & 0 & -a+b \\ 0 & 1 & b+c \\ 1 & c & c^{2}\end{array}\right| \\ & =(a-b)(b-c)(c-a)\left|\begin{array}{lll}0 & 0 & -1 \\ 0 & 1 & b+c \\ 1 & c & c^{2}\end{array}\right|\end{aligned}$
Expanding along C_{1}, we have:
$\Delta=(a-b)(b-c)(c-a)\left|\begin{array}{ll}0 & -1 \\ 1 & b+c\end{array}\right|=(a-b)(b-c)(c-a)$
Hence, the given result is proved.
(ii) Let $\left|\begin{array}{lll}a^{3} & b^{3} & c^{3}\end{array}\right|$.

Applying $C_{1} \rightarrow C_{1}-C_{3}$ and $C_{2} \rightarrow C_{2}-C_{3}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
0 & 0 & 1 \\
a-c & b-c & c \\
a^{3}-c^{3} & b^{3}-c^{3} & c^{3}
\end{array}\right| \\
& =\left|\begin{array}{lcc}
0 & 0 & 1 \\
a-c & b-c & c \\
(a-c)\left(a^{2}+a c+c^{2}\right) & (b-c)\left(b^{2}+b c+c^{2}\right) & c^{3}
\end{array}\right| \\
& =(c-a)(b-c)\left|\begin{array}{lll}
0 & 0 & c \\
-1 & 1 & c^{3}
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}$, we have:

$$
\left.\begin{array}{rl}
\Delta & =(c-a)(b-c)\left|\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & c \\
\left(b^{2}-a^{2}\right)+(b c-a c) & \left(b^{2}+b c+c^{2}\right) & c^{3}
\end{array}\right| \\
& =(b-c)(c-a)(a-b) \left\lvert\, \begin{array}{c}
1 \\
0
\end{array}\right. \\
-(a+b+c) & \left(b^{2}+b c+c^{2}\right) \\
0 & 1 \\
c^{3}
\end{array} \right\rvert\,
$$

Expanding along C_{1}, we have:

$$
\begin{aligned}
\Delta & =(a-b)(b-c)(c-a)(a+b+c)(-1)\left|\begin{array}{ll}
0 & 1 \\
1 & c
\end{array}\right| \\
& =(a-b)(b-c)(c-a)(a+b+c)
\end{aligned}
$$

Hence, the given result is proved.

Question 9:

By using properties of determinants, show that:

$$
\left|\begin{array}{lll}
x & x^{2} & y z \\
y & y^{2} & z x \\
z & z^{2} & x y
\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)
$$

Answer

Let $\Delta=\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|$.
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
x & x^{2} & y z \\
y-x & y^{2}-x^{2} & z x-y z \\
z-x & z^{2}-x^{2} & x y-y z
\end{array}\right| \\
& =\left|\begin{array}{lll}
x & x^{2} & y z \\
-(x-y) & -(x-y)(x+y) & z(x-y) \\
(z-x) & (z-x)(z+x) & -y(z-x)
\end{array}\right| \\
& =(x-y)(z-x)\left|\begin{array}{lll}
x & x^{2} & y z \\
-1 & -x-y & z \\
1 & z+x & -y
\end{array}\right|
\end{aligned}
$$

Applying $R_{3} \rightarrow R_{3}+R_{2}$, we have:

$$
\begin{aligned}
\Delta & =(x-y)(z-x)\left|\begin{array}{lll}
x & x^{2} & y z \\
-1 & -x-y & z \\
0 & z-y & z-y
\end{array}\right| \\
& =(x-y)(z-x)(z-y)\left|\begin{array}{lcc}
x & x^{2} & y z \\
-1 & -x-y & z \\
0 & 1 & 1
\end{array}\right|
\end{aligned}
$$

Expanding along R_{3}, we have:

$$
\begin{aligned}
\Delta & =[(x-y)(z-x)(z-y)]\left[(-1)\left|\begin{array}{cc}
x & y z \\
-1 & z
\end{array}\right|+1\left|\begin{array}{cc}
x & x^{2} \\
-1 & -x-y
\end{array}\right|\right] \\
& =(x-y)(z-x)(z-y)\left[(-x z-y z)+\left(-x^{2}-x y+x^{2}\right)\right] \\
& =-(x-y)(z-x)(z-y)(x y+y z+z x) \\
& =(x-y)(y-z)(z-x)(x y+y z+z x)
\end{aligned}
$$

Hence, the given result is proved.

Question 10:

By using properties of determinants, show that:
(i) $\left|\begin{array}{lll}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(4-x)^{2}$
(ii) $\left|\begin{array}{lll}y+k & y & y \\ y & y+k & y \\ y & y & y+k\end{array}\right|=k^{2}(3 y+k)$

Answer
(i)

$$
\Delta=\left|\begin{array}{lll}
x+4 & 2 x & 2 x \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right|_{\text {Applying }}
$$

$$
\begin{aligned}
& \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}, \text { we have: } \\
& \Delta=\left|\begin{array}{lll}
5 x+4 & 5 x+4 & 5 x+4 \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right| \\
&=(5 x+4)\left|\begin{array}{lll}
1 & 1 & 1 \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right|
\end{aligned}
$$

$$
\text { Applying } C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{1} \text {, we have: }
$$

$$
\begin{aligned}
\Delta & =(5 x+4)\left|\begin{array}{lll}
1 & 0 & 0 \\
2 x & -x+4 & 0 \\
2 x & 0 & -x+4
\end{array}\right| \\
& =(5 x+4)(4-x)(4-x)\left|\begin{array}{lll}
1 & 0 & 0 \\
2 x & 1 & 0 \\
2 x & 0 & 1
\end{array}\right|
\end{aligned}
$$

Expanding along C_{3}, we have:

$$
\begin{aligned}
\Delta & =(5 x+4)(4-x)^{2}\left|\begin{array}{ll}
1 & 0 \\
2 x & 1
\end{array}\right| \\
& =(5 x+4)(4-x)^{2}
\end{aligned}
$$

Hence, the given result is proved.
(ii) $\Delta=\left|\begin{array}{lll}y+k & y & y \\ y & y+k & y \\ y & y & y+k\end{array}\right|_{\text {Applying }}$

$$
R_{1} \rightarrow R_{1}+R_{2}+R_{3}, \text { we have: }
$$

$$
\begin{aligned}
\Delta & =\left\lvert\, \begin{array}{lll}
3 y+k & \begin{array}{ll}
3 y+k & 3 y+k \\
y & y+k \\
y & y
\end{array} & \left.\begin{array}{l}
y \\
y+k
\end{array} \right\rvert\, \\
& =(3 y+k)\left|\begin{array}{lll}
1 & 1 & 1 \\
y & y+k & y \\
y & y & y+k
\end{array}\right|
\end{array}\right.
\end{aligned}
$$

Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$, we have:

Δ	$=(3 y+k)\left\|\begin{array}{lll}1 & 0 & 0 \\ y & k & 0 \\ y & 0 & k\end{array}\right\|$
	$=k^{2}(3 y+k)\left\|\begin{array}{lll}1 & 0 & 0 \\ y & 1 & 0 \\ y & 0 & 1\end{array}\right\|$

Expanding along C_{3}, we have:
$\Delta=k^{2}(3 y+k)\left|\begin{array}{ll}1 & 0 \\ y & 1\end{array}\right|=k^{2}(3 y+k)$
Hence, the given result is proved.

Question 11:

By using properties of determinants, show that:
(i) $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$
(ii) $\left|\begin{array}{llc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}$

Answer
(i)

Applying $C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{1}$, we have:

$$
\begin{aligned}
\Delta & =(a+b+c)\left|\begin{array}{lcc}
1 & 0 & 0 \\
2 b & -(a+b+c) & 0 \\
2 c & 0 & -(a+b+c)
\end{array}\right| \\
& =(a+b+c)^{3}\left|\begin{array}{lll}
1 & 0 & 0 \\
2 b & -1 & 0 \\
2 c & 0 & -1
\end{array}\right|
\end{aligned}
$$

Expanding along C_{3}, we have:

$$
\Delta=(a+b+c)^{3}(-1)(-1)=(a+b+c)^{3}
$$

Hence, the given result is proved.
(ii) $\Delta=\left|\begin{array}{clr}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|$

$$
\begin{aligned}
& \text { Applying } \begin{array}{c}
\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}, \text { we have: } \\
2(x+y+z) \\
\Delta
\end{array}=\left\lvert\, \begin{array}{ll}
\\
2(x+y+z) & y+z+2 x
\end{array}\right. \\
& 2(x+y+z) \\
& \\
& =2(x+y+z)\left|\begin{array}{lll}
1 & x & y \\
1 & y+z+2 x & y \\
1 & x & z+x+2 y
\end{array}\right|
\end{aligned}
$$

Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we have:

$$
\begin{aligned}
\Delta & \left.=2(x+y+z) \left\lvert\, \begin{array}{lll}
1 & & x \\
0 & & x+y+z
\end{array}\right.\right) 0 \\
& =2(x+y+z)^{3}\left|\begin{array}{lll}
1 & x & y \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|
\end{aligned}
$$

Expanding along R_{3}, we have:
$\Delta=2(x+y+z)^{3}(1)(1-0)=2(x+y+z)^{3}$
Hence, the given result is proved.

Question 12:

By using properties of determinants, show that:
$\left|\begin{array}{lll}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}$

Answer

$$
\Delta=\left|\begin{array}{lll}
1 & x & x^{2} \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right|
$$

Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
1+x+x^{2} & 1+x+x^{2} & 1+x+x^{2} \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right| \\
& =\left(1+x+x^{2}\right)\left|\begin{array}{lll}
1 & 1 & 1 \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right|
\end{aligned}
$$

Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$, we have:

$$
\begin{aligned}
\Delta & =\left(1+x+x^{2}\right)\left|\begin{array}{lll}
1 & 0 & 0 \\
x^{2} & 1-x^{2} & x-x^{2} \\
x & x^{2}-x & 1-x
\end{array}\right| \\
& =\left(1+x+x^{2}\right)(1-x)(1-x)\left|\begin{array}{lll}
1 & 0 & 0 \\
x^{2} & 1+x & x \\
x & -x & 1
\end{array}\right| \\
& =\left(1-x^{3}\right)(1-x)\left|\begin{array}{lll}
1 & 0 & 0 \\
x^{2} & 1+x & x \\
x & -x & 1
\end{array}\right|
\end{aligned}
$$

Expanding along R_{1}, we have:

$$
\begin{aligned}
\Delta & =\left(1-x^{3}\right)(1-x)(1)\left|\begin{array}{ll}
1+x & x \\
-x & 1
\end{array}\right| \\
& =\left(1-x^{3}\right)(1-x)\left(1+x+x^{2}\right) \\
& =\left(1-x^{3}\right)\left(1-x^{3}\right) \\
& =\left(1-x^{3}\right)^{2}
\end{aligned}
$$

Hence, the given result is proved.

Question 13:
By using properties of determinants, show that:

$$
\left|\begin{array}{cll}
1+a^{2}-b^{2} & 2 a b & -2 b \\
2 a b & 1-a^{2}+b^{2} & 2 a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}
$$

Answer

$$
\Delta=\left|\begin{array}{rll}
1+a^{2}-b^{2} & 2 a b & -2 b \\
2 a b & 1-a^{2}+b^{2} & 2 a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|
$$

Applying $R_{1} \rightarrow R_{1}+b R_{3}$ and $R_{2} \rightarrow R_{2}-a R_{3}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
1+a^{2}+b^{2} & 0 & -b\left(1+a^{2}+b^{2}\right) \\
0 & 1+a^{2}+b^{2} & a\left(1+a^{2}+b^{2}\right) \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right| \\
& =\left(1+a^{2}+b^{2}\right)^{2}\left|\begin{array}{lll}
1 & 0 & -b \\
0 & 1 & a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|
\end{aligned}
$$

Expanding along R_{1}, we have:

$$
\begin{aligned}
\Delta & =\left(1+a^{2}+b^{2}\right)^{2}\left[(1)\left|\begin{array}{ll}
1 & a \\
-2 a & 1-a^{2}-b^{2}
\end{array}\right|-b\left|\begin{array}{ll}
0 & 1 \\
2 b & -2 a
\end{array}\right|\right] \\
& =\left(1+a^{2}+b^{2}\right)^{2}\left[1-a^{2}-b^{2}+2 a^{2}-b(-2 b)\right] \\
& =\left(1+a^{2}+b^{2}\right)^{2}\left(1+a^{2}+b^{2}\right) \\
& =\left(1+a^{2}+b^{2}\right)^{3}
\end{aligned}
$$

Question 14:

By using properties of determinants, show that:
$\left|\begin{array}{lll}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & c b & c^{2}+1\end{array}\right|=1+a^{2}+b^{2}+c^{2}$
Answer

$$
\Delta=\left|\begin{array}{lll}
a^{2}+1 & a b & a c \\
a b & b^{2}+1 & b c \\
c a & c b & c^{2}+1
\end{array}\right|
$$

Taking out common factors a, b, and c from R_{1}, R_{2}, and R_{3} respectively, we have:
$\Delta=a b c \left\lvert\, a+\frac{1}{a}\right.$
b
c
c
$c+\frac{1}{c}$

Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we have:

$$
\Delta=a b c\left|\begin{array}{ccc}
a+\frac{1}{a} & b & c \\
-\frac{1}{a} & \frac{1}{b} & 0 \\
-\frac{1}{a} & 0 & \frac{1}{c}
\end{array}\right|
$$

Applying $\mathrm{C}_{1} \rightarrow \mathrm{aC}_{1}, \mathrm{C}_{2} \rightarrow \mathrm{bC}_{2}$, and $\mathrm{C}_{3} \rightarrow \mathrm{cC}_{3}$, we have:
$\Delta=a b c \times \frac{1}{a b c}\left|\begin{array}{lll}a^{2}+1 & b^{2} & c^{2} \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right|$
$=\left|\begin{array}{lll}a^{2}+1 & b^{2} & c^{2} \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right|$
Expanding along R_{3}, we have:

$$
\begin{aligned}
\Delta & =-1\left|\begin{array}{ll}
b^{2} & c^{2} \\
1 & 0
\end{array}\right|+1\left|\begin{array}{ll}
a^{2}+1 & b^{2} \\
-1 & 1
\end{array}\right| \\
& =-1\left(-c^{2}\right)+\left(a^{2}+1+b^{2}\right)=1+a^{2}+b^{2}+c^{2}
\end{aligned}
$$

Hence, the given result is proved.

Question 15:
Choose the correct answer.
Let A be a square matrix of order 3×3, then $|k A|$ is equal to
A. $k|A|$
B. $k^{2}|A|$
C. $k^{3}|A|$
D. $3 k|A|$

Answer
Answer: C
A is a square matrix of order 3×3.
Let $A=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]$.
Then, $k A=\left[\begin{array}{lll}k a_{1} & k b_{1} & k c_{1} \\ k a_{2} & k b_{2} & k c_{2} \\ k a_{3} & k b_{3} & k c_{3}\end{array}\right]$.
$\therefore|k A|=\left|\begin{array}{lll}k a_{1} & k b_{1} & k c_{1} \\ k a_{2} & k b_{2} & k c_{2} \\ k a_{3} & k b_{3} & k c_{3}\end{array}\right|$
$=k^{3}\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$
(Taking out common factors k from each row)
$=k^{3}|A|$
$\therefore|k A|=k^{3}|A|$
Hence, the correct answer is C.

Question 16:
Which of the following is correct?
A. Determinant is a square matrix.
B. Determinant is a number associated to a matrix.
C. Determinant is a number associated to a square matrix.
D. None of these

Answer
Answer: C
We know that to every square matrix, $A=[a i j]$ of order n . We can associate a number called the determinant of square matrix A, where $a i j=(i, j)^{\text {th }}$ element of A. Thus, the determinant is a number associated to a square matrix. Hence, the correct answer is C.

Question 1:

Find area of the triangle with vertices at the point given in each of the following:
(i) $(1,0),(6,0),(4,3)$ (ii) $(2,7),(1,1),(10$,
8) (iii) $(-2,-3),(3,2),(-1,-8)$

Answer
(i) The area of the triangle with vertices $(1,0),(6,0),(4,3)$ is given by the relation, $\Delta=\frac{1}{2}\left|\begin{array}{lll}1 & 0 & 1 \\ 6 & 0 & 1 \\ 4 & 3 & 1\end{array}\right|$
$=\frac{1}{2}[1(0-3)-0(6-4)+1(18-0)]$
$=\frac{1}{2}[-3+18]=\frac{15}{2}$ square units
(ii) The area of the triangle with vertices $(2,7),(1,1),(10,8)$ is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{ccc}
2 & 7 & 1 \\
1 & 1 & 1 \\
10 & 8 & 1
\end{array}\right| \\
& =\frac{1}{2}[2(1-8)-7(1-10)+1(8-10)] \\
& =\frac{1}{2}[2(-7)-7(-9)+1(-2)] \\
& =\frac{1}{2}[-14+63-2]=\frac{1}{2}[-16+63] \\
& =\frac{47}{2} \text { square units }
\end{aligned}
$$

(iii) The area of the triangle with vertices $(-2,-3),(3,2),(-1$,
-8) is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{rrr}
-2 & -3 & 1 \\
3 & 2 & 1 \\
-1 & -8 & 1
\end{array}\right| \\
& =\frac{1}{2}[-2(2+8)+3(3+1)+1(-24+2)] \\
& =\frac{1}{2}[-2(10)+3(4)+1(-22)] \\
& =\frac{1}{2}[-20+12-22] \\
& =-\frac{30}{2}=-15
\end{aligned}
$$

Hence, the area of the triangle is $|-15|=15$ square units.

Question 2:

Show that points

$$
\mathrm{A}(a, b+c), \mathrm{B}(b, c+a), \mathrm{C}(c, a+b) \text { are collinear }
$$

Answer
Area of $\triangle A B C$ is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{lll}
a & b+c & 1 \\
b & c+a & 1 \\
c & a+b & 1
\end{array}\right| \\
& =\frac{1}{2}\left|\begin{array}{ccc}
a & b+c & 1 \\
b-a & a-b & 0 \\
c-a & a-c & 0
\end{array}\right|\left(\text { Applying } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \text { and } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\right)
\end{aligned}
$$

$$
=\frac{1}{2}(a-b)(c-a)\left|\begin{array}{ccc}
a & b+c & 1 \\
-1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right|
$$

$$
=\frac{1}{2}(a-b)(c-a)\left|\begin{array}{ccc}
a & b+c & 1 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right|\left(\text { Applying } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{2}\right)
$$

$$
=0 \quad\left(\text { All elements of } R_{3} \text { are } 0\right)
$$

Thus, the area of the triangle formed by points A, B, and C is zero.

Hence, the points A, B, and C are collinear.

Question 3:

Find values of k if area of triangle is 4 square units and vertices are
(i) $(k, 0),(4,0),(0,2)(i i)(-2,0),(0,4),(0$,
k) Answer

We know that the area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ is the absolute value of the determinant (Δ), where
$\Delta=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
It is given that the area of triangle is 4 square units.
$\therefore \quad= \pm 4$.
(i) The area of the triangle with vertices $(k, 0),(4,0),(0,2)$ is given by the relation,

$$
=\frac{1}{2}\left|\begin{array}{lll}
k & 0 & 1 \\
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right|
$$

$=\frac{1}{2}[k(0-2)-0(4-0)+1(8-0)]$
$=\frac{1}{2}[-2 k+8]=-k+4$
$\therefore-\mathrm{k}+4= \pm 4$

When $-k+4=-4, k=8$.
When $-k+4=4, k=0$.
Hence, $k=0,8$.
(ii) The area of the triangle with vertices $(-2,0),(0,4),(0, k)$ is given by the relation,
$=\frac{1}{2}\left|\begin{array}{ccc}-2 & 0 & 1 \\ 0 & 4 & 1 \\ 0 & k & 1\end{array}\right|$
$=\frac{1}{2}[-2(4-k)]$
$=k-4$
$\therefore \mathrm{k}-4= \pm 4$

When $\mathrm{k}-4=-4, \mathrm{k}=0$.
When $k-4=4, k=8$.
Hence, $k=0,8$.

Question 4:

(i) Find equation of line joining $(1,2)$ and $(3,6)$ using determinants
(ii) Find equation of line joining $(3,1)$ and $(9,3)$ using determinants Answer
(i) Let $P(x, y)$ be any point on the line joining points $A(1,2)$ and $B(3,6)$. Then, the points A, B, and P are collinear. Therefore, the area of triangle $A B P$ will be zero.
$\therefore \frac{1}{2}\left|\begin{array}{lll}1 & 2 & 1 \\ 3 & 6 & 1 \\ x & y & 1\end{array}\right|=0$
$\Rightarrow \frac{1}{2}[1(6-y)-2(3-x)+1(3 y-6 x)]=0$
$\Rightarrow 6-y-6+2 x+3 y-6 x=0$
$\Rightarrow 2 y-4 x=0$
$\Rightarrow y=2 x$
Hence, the equation of the line joining the given points is $y=2 x$. (ii)
Let $P(x, y)$ be any point on the line joining points $A(3,1)$ and
$B(9,3)$. Then, the points A, B, and P are collinear. Therefore, the area of triangle ABP will be zero.

$$
\begin{aligned}
& \therefore \frac{1}{2}\left|\begin{array}{lll}
3 & 1 & 1 \\
9 & 3 & 1 \\
x & y & 1
\end{array}\right|=0 \\
& \Rightarrow \frac{1}{2}[3(3-y)-1(9-x)+1(9 y-3 x)]=0 \\
& \Rightarrow 9-3 y-9+x+9 y-3 x=0 \\
& \Rightarrow 6 y-2 x=0 \\
& \Rightarrow x-3 y=0
\end{aligned}
$$

Hence, the equation of the line joining the given points is $x-3 y=0$.

Question 5:

If area of triangle is 35 square units with vertices $(2,-6),(5,4)$, and $(k, 4)$. Then k is
A. 12 B. -2 C. $-12,-2$ D. $12,-2$

Answer
Answer: D
The area of the triangle with vertices $(2,-6),(5,4)$, and $(k, 4)$ is given by the relation,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{ccc}
2 & -6 & 1 \\
5 & 4 & 1 \\
k & 4 & 1
\end{array}\right| \\
& =\frac{1}{2}[2(4-4)+6(5-k)+1(20-4 k)] \\
& =\frac{1}{2}[30-6 k+20-4 k] \\
& =\frac{1}{2}[50-10 k] \\
& =25-5 k
\end{aligned}
$$

It is given that the area of the triangle is ± 35.
Therefore, we have:

$$
\begin{aligned}
& \Rightarrow 25-5 k= \pm 35 \\
& \Rightarrow 5(5-k)= \pm 35 \\
& \Rightarrow 5-k= \pm 7
\end{aligned}
$$

When $5-k=-7, k=5+7=12$.
When $5-k=7, k=5-7=-2$.
Hence, $k=12,-2$.
The correct answer is D.

Question 1:

Write Minors and Cofactors of the elements of following determinants:
(i) $\left|\begin{array}{rr}2 & -4 \\ 0 & 3\end{array}\right| \quad\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$

Answer
(i) The given determinant is

$\therefore \mathrm{M}_{11}=$ minor of element $\mathrm{a}_{11}=3$

$$
\begin{aligned}
& M_{12}=\text { minor of element } a_{12}=0 \\
& M_{21}=\text { minor of element } a_{21}=-4 \\
& M_{22}=\text { minor of element } a_{22}=2 \\
& \text { Cofactor of } a_{i j} \text { is } A_{i j}=(-1)^{i+j} M_{i j} . \\
& \therefore A_{11}=(-1)^{1+1} M_{11}=(-1)^{2}(3)=3
\end{aligned}
$$

$$
A_{12}=(-1)^{1+2} M_{12}=(-1)^{3}(0)=0
$$

$$
A_{21}=(-1)^{2+1} M_{21}=(-1)^{3}(-4)=4
$$

$$
A_{22}=(-1)^{2+2} M_{22}=(-1)^{4}(2)=2
$$

(ii) The given determinant is $\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$.

Minor of element $a_{i j}$ is $M_{i j}$.
$M_{12}=$ minor of element $a_{12}=b$
$M_{21}=$ minor of element $a_{21}=c$
$M_{22}=$ minor of element $a_{22}=a$
Cofactor of $a_{i j}$ is $A_{i j}=(-1)^{i+j} M_{i j}$.
$\therefore A_{11}=(-1)^{1+1} M_{11}=(-1)^{2}(d)=d$
$A_{12}=(-1)^{1+2} M_{12}=(-1)^{3}(b)=-b$
$A_{21}=(-1)^{2+1} M_{21}=(-1)^{3}(c)=-c$
$A_{22}=(-1)^{2+2} M_{22}=(-1)^{4}(a)=a$

Question 2:
(i) $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right|_{\text {(ii) }}$
$\left|\begin{array}{rrr}1 & 0 & 4 \\ 3 & 5 & -1\end{array}\right|$ Answer
(i) The given determinant is $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$.

By the definition of minors and cofactors, we have:
$M_{11}=$ minor of $a_{11}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1$
$M_{12}=$ minor of $a_{12}=\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=0$

(ii) The given determinant is $\left|\begin{array}{rrr}1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2\end{array}\right|$.

By definition of minors and cofactors, we have:
$M_{11}=$ minor of $a_{11}=\left|\begin{array}{cc}5 & -1 \\ 1 & 2\end{array}\right|=10+1=11$
$M_{12}=$ minor of $a_{12}=\left|\begin{array}{cc}3 & -1 \\ 0 & 2\end{array}\right|=6-0=6$
$M_{13}=$ minor of $a_{13}=\left|\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right|=3-0=3$
$M_{21}=$ minor of $a_{21}=\left|\begin{array}{ll}0 & 4 \\ 3 & 2\end{array}\right|=0-4=-4$
$M_{22}=$ minor of $a_{22}\left|\begin{array}{ll}1 & 4 \\ 0 & 2\end{array}\right|=2-0=2$
$M_{23}=$ minor of $a_{23}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1-0=1$
$M_{31}=$ minor of $a_{31}=\left|\begin{array}{cc}0 & 4 \\ 5 & -1\end{array}\right|=0-20=-20$
$M_{32}=$ minor of $a_{32}=\left|\begin{array}{cc}1 & 4 \\ 3 & -1\end{array}\right|=-1-12=-13$
$M_{33}=$ minor of $a_{33}=\left|\begin{array}{ll}1 & 0 \\ 3 & 5\end{array}\right|=5-0=5$
$A_{11}=$ cofactor of $a_{11}=(-1)^{1+1} M_{11}=11$
$A_{12}=$ cofactor of $a_{12}=(-1)^{1+2} M_{12}=-6$
$A_{13}=$ cofactor of $a_{13}=(-1)^{1+3} M_{13}=3$
$A_{21}=$ cofactor of $a_{21}=(-1)^{2+1} M_{21}=4$
$A_{22}=$ cofactor of $a_{22}=(-1)^{2+2} M_{22}=2$
$A_{23}=$ cofactor of $a_{23}=(-1)^{2+3} M_{23}=-1$
$A_{31}=$ cofactor of $a_{31}=(-1)^{3+1}{ }^{|v|}{ }_{31}=-20$
$\mathrm{A}_{32}=$ cofactor of $\mathrm{a}_{32}=(-1)^{3+2^{\mathbf{I V I}^{\prime}}} 32=13$
$A_{33}=$ cofactor of $a_{33}=(-1)^{3+3} M_{33}=5$

Question 3:

Using Cofactors of elements of second row, evaluate

The given determinant is $\left|\begin{array}{lll}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{array}\right|$.
We have:
$M_{21}=\left|\begin{array}{ll}3 & 8 \\ 2 & 3\end{array}\right|=9-16=-7$
$\therefore \mathrm{A}_{21}=$ cofactor of $\mathrm{a}_{21}=(-1)^{2+1} \mathrm{M}_{21}=7$
$M_{22}=\left|\begin{array}{ll}5 & 8 \\ 1 & 3\end{array}\right|=15-8=7$
$\therefore \mathrm{A}_{22}=$ cofactor of $\mathrm{a}_{22}=(-1)^{2+2} \mathrm{M}_{22}=7$
$M_{23}=\left|\begin{array}{ll}5 & 3 \\ 1 & 2\end{array}\right|=10-3=7$
$\therefore A_{23}=$ cofactor of $\mathrm{a}_{23}=(-1)^{2+3} \mathrm{M}_{23}=-7$

We know that is equal to the sum of the product of the elements of the second row with their corresponding cofactors.
Class XII
$\therefore \quad=a_{21} A_{21}+a_{22} A_{22}+a_{23} A_{23}=2(7)+0(7)+1(-7)=14-7=7$

Question 4:
Using Cofactors of elements of third column, evaluate

$$
\Delta=\left|\begin{array}{lll}
1 & x & y z \\
1 & y & z x \\
1 & z & x y
\end{array}\right|
$$

Answer
The given determinant is $\left|\begin{array}{lll}1 & x & y z \\ 1 & y & z x \\ 1 & z & x y\end{array}\right|$.
We have:
$M_{13}=\left|\begin{array}{ll}1 & y \\ 1 & z\end{array}\right|=z-y$
$\mathrm{M}_{23}=\left|\begin{array}{ll}1 & x \\ 1 & z\end{array}\right|=z-x$
$\mathrm{M}_{33}=\left|\begin{array}{ll}1 & x \\ 1 & y\end{array}\right|=y-x$
$\therefore A_{13}=$ cofactor of $a_{13}=(-1)^{1+3} M_{13}=(z-y)$
$A_{23}=$ cofactor of $a_{23}=(-1)^{2+3} M_{23}=-(z-x)=(x-z)$
$A_{33}=$ cofactor of $\mathrm{a}_{33}=(-1)^{3+3} \mathrm{M}_{33}=(y-x)$
We know that is equal to the sum of the product of the elements of the second row with their corresponding cofactors.

$$
\begin{aligned}
\therefore \Delta & =a_{13} \mathrm{~A}_{13}+a_{23} \mathrm{~A}_{23}+a_{33} \mathrm{~A}_{33} \\
& =y z(z-y)+z x(x-z)+x y(y-x) \\
& =y z^{2}-y^{2} z+x^{2} z-x z^{2}+x y^{2}-x^{2} y \\
& =\left(x^{2} z-y^{2} z\right)+\left(y z^{2}-x z^{2}\right)+\left(x y^{2}-x^{2} y\right) \\
& =z\left(x^{2}-y^{2}\right)+z^{2}(y-x)+x y(y-x) \\
& =z(x-y)(x+y)+z^{2}(y-x)+x y(y-x) \\
& =(x-y)\left[z x+z y-z^{2}-x y\right] \\
& =(x-y)[z(x-z)+y(z-x)] \\
& =(x-y)(z-x)[-z+y] \\
& =(x-y)(y-z)(z-x)
\end{aligned}
$$

Hence, $\Delta=(x-y)(y-z)(z-x)$.

Question 5:

For the matrices A and B, verify that $(A B)^{\prime}=B^{\prime} A^{\prime}$ where
(i)

$$
A=\left[\begin{array}{r}
1 \\
-4 \\
3
\end{array}\right], B=\left[\begin{array}{lll}
-1 & 2 & 1
\end{array}\right]
$$

(ii)

$$
A=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right], B=\left[\begin{array}{lll}
1 & 5 & 7
\end{array}\right]
$$

Answer
(i)

Hence, we have verified that $(A B)^{\prime}=B^{\prime} A^{\prime}$.
(ii)
$A B=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\left[\begin{array}{lll}1 & 5 & \left.7]=\left[\begin{array}{rrr}0 & 0 & 0 \\ 1 & 5 & 7 \\ 2 & 10 & 14\end{array}\right], ~\right]\end{array}\right.$
$\therefore(A B)^{\prime}=\left[\begin{array}{rrr}0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14\end{array}\right]$
Now, $A^{\prime}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right], B^{\prime}=\left[\begin{array}{l}1 \\ 5 \\ 7\end{array}\right]$
$\therefore B^{\prime} A^{\prime}=\left[\begin{array}{l}1 \\ 5 \\ 7\end{array}\right]\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]=\left[\begin{array}{rrr}0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14\end{array}\right]$

Hence, we have verified that $(A B)^{\prime}=B^{\prime} A^{\prime}$.

Exercise 4.5

Question 1:

Find adjoint of each of the matrices.
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
Answer
Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
We have,
$A_{11}=4, A_{12}=-3, A_{21}=-2, A_{22}=1$
$\therefore \operatorname{adj} A=\left[\begin{array}{ll}A_{11} & A_{21} \\ A_{12} & A_{22}\end{array}\right]=\left[\begin{array}{lr}4 & -2 \\ -3 & 1\end{array}\right]$

Question 2:

Find adjoint of each of the matrices.
$\left[\begin{array}{lrr}1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1\end{array}\right]$
Answer
Let $A=\left[\begin{array}{lrr}1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1\end{array}\right]$.
We have,
$A_{11}=\left|\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right|=3-0=3$
$A_{12}=-\left|\begin{array}{ll}2 & 5 \\ -2 & 1\end{array}\right|=-(2+10)=-12$
$A_{13}=\left|\begin{array}{ll}2 & 3 \\ -2 & 0\end{array}\right|=0+6=6$
$A_{21}=-\left|\begin{array}{ll}-1 & 2 \\ 0 & 1\end{array}\right|=-(-1-0)=1$
$A_{22}=\left|\begin{array}{ll}1 & 2 \\ -2 & 1\end{array}\right|=1+4=5$
$A_{23}=-\left|\begin{array}{ll}1 & -1 \\ -2 & 0\end{array}\right|=-(0-2)=2$
$A_{31}=\left|\begin{array}{ll}-1 & 2 \\ 3 & 5\end{array}\right|=-5-6=-11$
$A_{32}=-\left|\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right|=-(5-4)=-1$
$A_{33}=\left|\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right|=3+2=5$
Hence, adj $A=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right]=\left[\begin{array}{lll}3 & 1 & -11 \\ -12 & 5 & -1 \\ 6 & 2 & 5\end{array}\right]$.

Question 3:
Verify $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.
$\left[\begin{array}{rr}2 & 3 \\ -4 & -6\end{array}\right]$
Answer
$A=\left[\begin{array}{rr}2 & 3 \\ -4 & -6\end{array}\right]$
we have,
$|A|=-12-(-12)=-12+12=0$
$\therefore|A| I=0\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Now,
$A_{11}=-6, A_{12}=4, A_{21}=-3, A_{22}=2$
$\therefore \operatorname{adj} A=\left[\begin{array}{rr}-6 & -3 \\ 4 & 2\end{array}\right]$
Now,

$$
\begin{aligned}
A(\operatorname{adj} A) & =\left[\begin{array}{rr}
2 & 3 \\
-4 & -6
\end{array}\right]\left[\begin{array}{rr}
-6 & -3 \\
4 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
-12+12 & -6+6 \\
24-24 & 12-12
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Also, $(\operatorname{adj} A) A=\left[\begin{array}{rr}-6 & -3 \\ 4 & 2\end{array}\right]\left[\begin{array}{rr}2 & 3 \\ -4 & -6\end{array}\right]$

$$
=\left[\begin{array}{cc}
-12+12 & -18+18 \\
8-8 & 12-12
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Hence, $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.

Question 4:

Verify $\mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=|A| I$.
$\left[\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$
Answer
$A=\left[\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$
$|A|=1(0-0)+1(9+2)+2(0-0)=11$
$\therefore|A| I=11\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right]$
Now,
$A_{11}=0, A_{12}=-(9+2)=-11, A_{13}=0$
$A_{21}=-(-3-0)=3, A_{22}=3-2=1, A_{23}=-(0+1)=-1$
$A_{31}=2-0=2, A_{32}=-(-2-6)=8, A_{33}=0+3=3$
$\therefore \operatorname{adj} A=\left[\begin{array}{lll}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]$
Now,

$$
\begin{aligned}
A(\operatorname{adj} A) & =\left[\begin{array}{llr}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
0 & 3 & 2 \\
-11 & 1 & 8 \\
0 & -1 & 3
\end{array}\right] \\
& =\left[\begin{array}{lll}
0+11+0 & 3-1-2 & 2-8+6 \\
0+0+0 & 9+0+2 & 6+0-6 \\
0+0+0 & 3+0-3 & 2+0+9
\end{array}\right] \\
& =\left[\begin{array}{lll}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{array}\right]
\end{aligned}
$$

Also,
$(\operatorname{adj} A) \cdot A=\left[\begin{array}{lll}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]\left[\begin{array}{lcr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$

$$
=\left[\begin{array}{lll}
0+9+2 & 0+0+0 & 0-6+6 \\
-11+3+8 & 11+0+0 & -22-2+24 \\
0-3+3 & 0+0+0 & 0+2+9
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{array}\right]
$$

Hence, $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.

Question 6:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{ll}-1 & 5 \\ -3 & 2\end{array}\right]$
Answer

Let $A=\left[\begin{array}{ll}-1 & 5 \\ -3 & 2\end{array}\right]$.
we have,
$|A|=-2+15=13$
Now,
$A_{11}=2, A_{12}=3, A_{21}=-5, A_{22}=-1$
\therefore adj $A=\left[\begin{array}{ll}2 & -5 \\ 3 & -1\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{13}\left[\begin{array}{ll}2 & -5 \\ 3 & -1\end{array}\right]$

Question 7:
Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]$
Answer
Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]$.
We have,
$|A|=1(10-0)-2(0-0)+3(0-0)=10$
Now,

$$
\begin{aligned}
& A_{11}=10-0=10, A_{12}=-(0-0)=0, A_{13}=0-0=0 \\
& A_{21}=-(10-0)=-10, A_{22}=5-0=5, A_{23}=-(0-0)=0 \\
& A_{31}=8-6=2, A_{32}=-(4-0)=-4, A_{33}=2-0=2
\end{aligned}
$$

$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{10}\left[\begin{array}{ccc}10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2\end{array}\right]$

Question 8:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right]$
Answer
Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right]$
We have,
$|A|=1(-3-0)-0+0=-3$
Now,
$A_{11}=-3-0=-3, A_{12}=-(-3-0)=3, A_{13}=6-15=-9$
$A_{21}=-(0-0)=0, A_{22}=-1-0=-1, A_{23}=-(2-0)=-2$
$A_{31}=0-0=0, A_{32}=-(0-0)=0, A_{33}=3-0=3$
$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=-\frac{1}{3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]$

Question 9:

Find the inverse of each of the matrices (if it exists).

$$
\left[\begin{array}{lll}
2 & 1 & 3 \\
4 & -1 & 0 \\
-7 & 2 & 1
\end{array}\right]
$$

Answer
Let $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1\end{array}\right]$.
We have,

$$
\begin{aligned}
|A| & =2(-1-0)-1(4-0)+3(8-7) \\
& =2(-1)-1(4)+3(1) \\
& =-2-4+3 \\
& =-3
\end{aligned}
$$

Now,

$$
\begin{aligned}
& A_{11}=-1-0=-1, A_{12}=-(4-0)=-4, A_{13}=8-7=1 \\
& A_{21}=-(1-6)=5, A_{22}=2+21=23, A_{23}=-(4+7)=-11 \\
& A_{31}=0+3=3, A_{32}=-(0-12)=12, A_{33}=-2-4=-6
\end{aligned}
$$

$$
\therefore \operatorname{adj} A=\left[\begin{array}{lll}
-1 & 5 & 3 \\
-4 & 23 & 12 \\
1 & -11 & -6
\end{array}\right]
$$

$$
\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=-\frac{1}{3}\left[\begin{array}{lll}
-1 & 5 & 3 \\
-4 & 23 & 12 \\
1 & -11 & -6
\end{array}\right]
$$

Question 10:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]$.
Answer

Let $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]$.
By expanding along C_{1}, we have:
$|A|=1(8-6)-0+3(3-4)=2-3=-1$
Now,
$A_{11}=8-6=2, A_{12}=-(0+9)=-9, A_{13}=0-6=-6$
$A_{21}=-(-4+4)=0, A_{22}=4-6=-2, A_{23}=-(-2+3)=-1$
$A_{31}=3-4=-1, A_{32}=-(-3-0)=3, A_{33}=2-0=2$
$\therefore \operatorname{adj} A=\left[\begin{array}{lll}2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|}$ adj $A=-\left[\begin{array}{lll}2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2\end{array}\right]=\left[\begin{array}{lll}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$

Question 11:

Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$
Answer

Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$.
We have,
$|A|=1\left(-\cos ^{2} \alpha-\sin ^{2} \alpha\right)=-\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=-1$
Now,
$A_{11}=-\cos ^{2} \alpha-\sin ^{2} \alpha=-1, A_{12}=0, A_{13}=0$
$A_{21}=0, A_{22}=-\cos \alpha, A_{23}=-\sin \alpha$
$A_{31}=0, A_{32}=-\sin \alpha, A_{33}=\cos \alpha$
$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj} A=-\left[\begin{array}{lll}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$

Question 12:
Let $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right\rceil$. Verify that
$(A B)^{-1}=B^{-1} A^{-1}$ Answer
Let $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$.
We have,
$|A|=15-14=1$
Now,
$A_{11}=5, A_{12}=-2, A_{21}=-7, A_{22}=3$
$\therefore \operatorname{adj} A=\left[\begin{array}{rr}5 & -7 \\ -2 & 3\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj} A=\left[\begin{array}{rr}5 & -7 \\ -2 & 3\end{array}\right]$

Now, let $B=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]$.
We have,
$|B|=54-56=-2$
$\therefore \operatorname{adj} B=\left[\begin{array}{rr}9 & -8 \\ -7 & 6\end{array}\right]$
$\therefore B^{-1}=\frac{1}{|B|} \operatorname{adj} B=-\frac{1}{2}\left[\begin{array}{rr}9 & -8 \\ -7 & 6\end{array}\right]=\left[\begin{array}{cc}-\frac{9}{2} & 4 \\ \frac{7}{2} & -3\end{array}\right]$
Now,

$$
\begin{align*}
B^{-1} A^{-1} & =\left[\begin{array}{cc}
-\frac{9}{2} & 4 \\
\frac{7}{2} & -3
\end{array}\right]\left[\begin{array}{cc}
5 & -7 \\
-2 & 3
\end{array}\right] \\
& =\left[\begin{array}{ll}
-\frac{45}{2}-8 & \frac{63}{2}+12 \\
\frac{35}{2}+6 & -\frac{49}{2}-9
\end{array}\right]=\left[\begin{array}{cc}
-\frac{61}{2} & \frac{87}{2} \\
\frac{47}{2} & -\frac{67}{2}
\end{array}\right] \tag{1}
\end{align*}
$$

Then,

$$
\begin{aligned}
A B & =\left[\begin{array}{ll}
3 & 7 \\
2 & 5
\end{array}\right]\left[\begin{array}{ll}
6 & 8 \\
7 & 9
\end{array}\right] \\
& =\left[\begin{array}{ll}
18+49 & 24+63 \\
12+35 & 16+45
\end{array}\right] \\
& =\left[\begin{array}{ll}
67 & 87 \\
47 & 61
\end{array}\right]
\end{aligned}
$$

Therefore, we have $|A B|=67 \times 61-87 \times 47=4087-4089=-2$.
Also,
$\operatorname{adj}(A B)=\left[\begin{array}{rr}61 & -87 \\ -47 & 67\end{array}\right]$
$\therefore(A B)^{-1}=\frac{1}{|A B|} \operatorname{adj}(A B)=-\frac{1}{2}\left[\begin{array}{ll}61 & -87 \\ -47 & 67\end{array}\right]$

$$
=\left[\begin{array}{cc}
-\frac{61}{2} & \frac{87}{2} \tag{2}\\
\frac{47}{2} & -\frac{67}{2}
\end{array}\right]
$$

From (1) and (2), we have:
$(A B)^{-1}=B^{-1} A^{-1}$
Hence, the given result is proved.

Question 13:
If $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$, show that $A^{2}-5 A+7 I=O$. Hence find A^{-1}.
Answer

$$
\begin{aligned}
& A=\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right] \\
& A^{2}=A \cdot A=\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
9-1 & 3+2 \\
-3-2 & -1+4
\end{array}\right]=\left[\begin{array}{rr}
8 & 5 \\
-5 & 3
\end{array}\right] \\
& \therefore A^{2}-5 A+7 I \\
& =\left[\begin{array}{cc}
8 & 5 \\
-5 & 3
\end{array}\right]-5\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]+7\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
8 & 5 \\
-5 & 3
\end{array}\right]-\left[\begin{array}{rr}
15 & 5 \\
-5 & 10
\end{array}\right]+\left[\begin{array}{cc}
7 & 0 \\
0 & 7
\end{array}\right] \\
& =\left[\begin{array}{cc}
-7 & 0 \\
0 & -7
\end{array}\right]+\left[\begin{array}{rr}
7 & 0 \\
0 & 7
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Hence, $A^{2}-5 A+7 I=O$.
$\therefore A \cdot A-5 A=-7 I$
$\Rightarrow A \cdot A\left(A^{-1}\right)-5 A A^{-1}=-7 I A^{-1} \quad\left[\right.$ Post-multiplying by A^{-1} as $\left.|A| \neq 0\right]$
$\Rightarrow A\left(A A^{-1}\right)-5 I=-7 A^{-1}$
$\Rightarrow A I-5 I=-7 A^{-1}$
$\Rightarrow A^{-1}=-\frac{1}{7}(A-5 I)$
$\Rightarrow A^{-1}=\frac{1}{7}(5 I-A)$
$=\frac{1}{7}\left(\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]-\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]\right)=\frac{1}{7}\left[\begin{array}{rr}2 & -1 \\ 1 & 3\end{array}\right]$
$\therefore A^{-1}=\frac{1}{7}\left[\begin{array}{rr}2 & -1 \\ 1 & 3\end{array}\right]$

Question 14:
For the matrix $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$, find the numbers a and b such that $\mathrm{A}^{2}+\mathrm{aA}+\mathrm{bI}=$
O. Answer
$A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$
$\therefore A^{2}=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}9+2 & 6+2 \\ 3+1 & 2+1\end{array}\right]=\left[\begin{array}{cc}11 & 8 \\ 4 & 3\end{array}\right]$
Now,

$$
\begin{aligned}
& A^{2}+a A+b I=O \\
& \Rightarrow(A A) A^{-1}+a A A^{-1}+b I A^{-1}=O \\
& \Rightarrow A\left(A A^{-1}\right)+a I+b\left(I A^{-1}\right)=O \\
& \Rightarrow A I+a I+b A^{-1}=O \\
& \Rightarrow A+a I=-b A^{-1} \\
& \Rightarrow A^{-1}=-\frac{1}{b}(A+a I)
\end{aligned}
$$

$$
\Rightarrow(A A) A^{-1}+a A A^{-1}+b I A^{-1}=O \quad\left[\text { Post-multiplying by } A^{-1} \text { as }|A| \neq 0\right]
$$

Now,
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{1}\left[\begin{array}{rc}1 & -2 \\ -1 & 3\end{array}\right]=\left[\begin{array}{rc}1 & -2 \\ -1 & 3\end{array}\right]$
We have:
$\left[\begin{array}{cc}1 & -2 \\ -1 & 3\end{array}\right]=-\frac{1}{b}\left(\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]+\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]\right)=-\frac{1}{b}\left[\begin{array}{ll}3+a & 2 \\ 1 & 1+a\end{array}\right]=\left[\begin{array}{cc}\frac{-3-a}{b} & -\frac{2}{b} \\ -\frac{1}{b} & \frac{-1-a}{b}\end{array}\right]$
Comparing the corresponding elements of the two matrices, we have:
$-\frac{1}{b}=-1 \Rightarrow b=1$
$\frac{-3-a}{b}=1 \Rightarrow-3-a=1 \Rightarrow a=-4$
Hence, -4 and 1 are the required values of a and b respectively.

Question 15:
For the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]_{\text {show that } A^{3}-6 A^{2}+5 A+11 I=O \text {. Hence, find }}$ A^{-1}.
Answer

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right] \\
& A^{2}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1+1+2 & 1+2-1 & 1-3+3 \\
1+2-6 & 1+4+3 & 1-6-9 \\
2-1+6 & 2-2-3 & 2+3+9
\end{array}\right]=\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right] \\
& A^{3}=A^{2} \cdot A=\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right] \\
& =\left[\begin{array}{lll}
4+2+2 & 4+4-1 & 4-6+3 \\
-3+8-28 & -3+16+14 & -3-24-42 \\
7-3+28 & 7-6-14 & 7+9+42
\end{array}\right] \\
& =\left[\begin{array}{ccc}
8 & 7 & 1 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \therefore A^{3}-6 A^{2}+5 A+11 I \\
& =\left[\begin{array}{ccc}
8 & 7 & 1 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{array}\right]-6\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]+5\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]+11\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
8 & 7 & 1 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{array}\right]-\left[\begin{array}{ccc}
24 & 12 & 6 \\
-18 & 48 & -84 \\
42 & -18 & 84
\end{array}\right]+\left[\begin{array}{ccc}
5 & 5 & 5 \\
5 & 10 & -15 \\
10 & -5 & 15
\end{array}\right]+\left[\begin{array}{lll}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{array}\right] \\
& =\left[\begin{array}{ccc}
24 & 12 & 6 \\
-18 & 48 & -84 \\
42 & -18 & 84
\end{array}\right]-\left[\begin{array}{ccc}
24 & 12 & 6 \\
-18 & 48 & -84 \\
42 & -18 & 84
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=O
\end{aligned}
$$

Thus, $A^{3}-6 A^{2}+5 A+11 I=O$.
Now,

$$
\begin{align*}
& A^{3}-6 A^{2}+5 A+11 I=O \\
& \left.\Rightarrow(A A A) A^{-1}-6(A A) A^{-1}+5 A A^{-1}+11 L A^{-1}=0 \quad \text { [Post-multiplying by } A^{-1} \text { as }|A| \neq 0\right] \\
& \Rightarrow A A\left(A A^{-1}\right)-6 A\left(A A^{-1}\right)+5\left(A A^{-1}\right)=-11\left(I A^{-1}\right) \\
& \Rightarrow A^{2}-6 A+5 I=-11 A^{-1} \\
& \Rightarrow A^{-1}=-\frac{1}{11}\left(A^{2}-6 A+5 I\right) \quad \text { (1) } \tag{1}
\end{align*}
$$

Now,

$$
\begin{aligned}
& A^{2}-6 A+5 I \\
& =\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]-6\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]+5\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]-\left[\begin{array}{ccc}
6 & 6 & 6 \\
6 & 12 & -18 \\
12 & -6 & 18
\end{array}\right]+\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
9 & 2 & 1 \\
-3 & 13 & -14 \\
7 & -3 & 19
\end{array}\right]-\left[\begin{array}{lll}
6 & 6 & 6 \\
6 & 12 & -18 \\
12 & -6 & 18
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3 & -4 & -5 \\
-9 & 1 & 4 \\
-5 & 3 & 1
\end{array}\right]
\end{aligned}
$$

From equation (1), we have:
$A^{-1}=-\frac{1}{11}\left[\begin{array}{lll}3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1\end{array}\right]=\frac{1}{11}\left[\begin{array}{lll}-3 & 4 & 5 \\ 9 & -1 & -4 \\ 5 & -3 & -1\end{array}\right]$

Question 16:
If $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]_{\text {verify that } A^{3}-6 A^{2}+9 A-4 I=0 \text { and hence find } A^{-1}}$
Answer

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \\
A^{2} & =\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4+1+1 & -2-2-1 & 2+1+2 \\
-2-2-1 & 1+4+1 & -1-2-2 \\
2+1+2 & -1-2-2 & 1+1+4
\end{array}\right] \\
& =\left[\begin{array}{lll}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right] \\
A^{3} A & =\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 2 \\
1 & -1 \\
\hline
\end{array}\right] \\
& =\left[\begin{array}{ccc}
12+5+5 & -6-10-5 & 6+5+10 \\
-10-6-5 & 5+12+5 & -5-6-10 \\
10+5+6 & -5-10-6 & 5+5+12
\end{array}\right] \\
& =\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]
\end{aligned}
$$

Now,

$$
\begin{aligned}
& A^{3}-6 A^{2}+9 A-4 I \\
& =\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]-6\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]+9\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]-4\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]-\left[\begin{array}{ccc}
36 & -30 & 30 \\
-30 & 36 & -30 \\
30 & -30 & 36
\end{array}\right]+\left[\begin{array}{ccc}
18 & -9 & 9 \\
-9 & 18 & -9 \\
9 & -9 & 18
\end{array}\right]-\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right] \\
& =\left[\begin{array}{lll}
40 & -30 & 30 \\
-30 & 40 & -30 \\
30 & -30 & 40
\end{array}\right]-\left[\begin{array}{ccc}
40 & -30 & 30 \\
-30 & 40 & -30 \\
30 & -30 & 40
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \therefore A^{3}-6 A^{2}+9 A-4 I=O
\end{aligned}
$$

Now,

$$
\begin{align*}
& A^{3}-6 A^{2}+9 A-4 I=O \\
& \left.\Rightarrow(A A A) A^{-1}-6(A A) A^{-1}+9 A A^{-1}-4 I A^{-1}=O \quad \quad \text { Post-multiplying by } A^{-1} \text { as }|A| \neq 0\right] \\
& \Rightarrow A A\left(A A^{-1}\right)-6 A\left(A A^{-1}\right)+9\left(A A^{-1}\right)=4\left(I A^{-1}\right) \\
& \Rightarrow A A I-6 A I+9 I=4 A^{-1} \\
& \Rightarrow A^{2}-6 A+9 I=4 A^{-1} \\
& \Rightarrow A^{-1}=\frac{1}{4}\left(A^{2}-6 A+9 I\right) \tag{1}\\
& A^{2}-6 A+9 I \\
& =\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]-6\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]+9\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]-\left[\begin{array}{ccc}
12 & -6 & 6 \\
-6 & 12 & -6 \\
6 & -6 & 12
\end{array}\right]+\left[\begin{array}{l}
9 \\
0 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right]
\end{align*}
$$

From equation (1), we have:
$A^{-1}=\frac{1}{4}\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$

Question 17:

Let A be a nonsingular square matrix of order 3×3. Then $|\operatorname{adj} A|$ is equal to
A. $|A|$
B. $|A|^{2}$
C. $|A|_{D}^{3}$
D. $3|A|$

Answer B
We know that,
$(\operatorname{adj} A) A=|A| I=\left[\begin{array}{lll}|A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A|\end{array}\right]$
$\Rightarrow|(\operatorname{adj} A) A|=\left|\begin{array}{lll}|A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A|\end{array}\right|$
$\Rightarrow|\operatorname{adj} A||A|=|A|^{3}\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|=|A|^{3}(I)$
$\therefore|\operatorname{adj} A|=|A|^{2}$
Hence, the correct answer is B.

Question 18:

If A is an invertible matrix of order 2 , then $\operatorname{det}\left(A^{-1}\right)$ is equal to
A. $\operatorname{det}(\mathrm{A})$ B. ${ }^{\operatorname{det}(A)}$ C. 1 D. 0

Answer
Since A is an invertible matrix,
$\quad A^{-1}$ exists and $A^{-1}=\frac{1}{|A|} \operatorname{adj} A$.

As matrix A is of order 2, let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
Then, $|A|=a d-b c$ and $\operatorname{adj} A=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
Now,

$$
\begin{aligned}
& A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\left[\begin{array}{cc}
\frac{d}{|A|} & \frac{-b}{|A|} \\
\frac{-c}{|A|} & \frac{a}{|A|}
\end{array}\right] \\
& \therefore\left|A^{-1}\right|=\left\lvert\, \begin{array}{cc}
\frac{d}{|A|} & \left.\frac{-b}{|A|} \right\rvert\, \\
\frac{-c}{|A|} & \left.\frac{a}{|A|} \right\rvert\, \\
|A|^{2} \mid & \frac{1}{\mid c} \\
\therefore \operatorname{det}\left(A^{-1}\right)=\frac{-b}{\operatorname{det}(A)}
\end{array}\right.
\end{aligned}
$$

Hence, the correct answer is B.

Question 1:

Examine the consistency of the system of
equations. $x+2 y=2$
$2 x+3 y=$
3 Answer
The given system of equations
is: $x+2 y=2$
$2 x+3 y=3$
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
Now,
$\therefore A$ isl

Therefore, A^{-1} exists.
Hence, the given system of equations is consistent.

Question 2:

Examine the consistency of the system of equations. $2 x-y=5$
$x+y=$
4 Answer
The given system of equations
is: $2 x-y=5$
$x+y=4$
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}5 \\ 4\end{array}\right]$.
Now,
$\therefore A$ is 2 (d) -s (ing) 4 ($(\mathrm{d}):=2+1=3 \neq 0$

Therefore, A^{-1} exists.
Hence, the given system of equations is consistent.

Question 3:

Examine the consistency of the system of equations. $x+3 y=5$
$2 x+6 y=$
8 Answer
The given system of equations
is: $x+3 y=5$
$2 x+6 y=8$
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}5 \\ 8\end{array}\right]$.
Now,

Now,
$(\operatorname{adj} A)=\left[\begin{array}{cc}6 & -3 \\ -2 & 1\end{array}\right]$
$(\operatorname{adj} A) B=\left[\begin{array}{cc}6 & -3 \\ -2 & 1\end{array}\right]\left[\begin{array}{l}5 \\ 8\end{array}\right]=\left[\begin{array}{l}30-24 \\ -10+8\end{array}\right]=\left[\begin{array}{l}6 \\ -2\end{array}\right] \neq O$
Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.

Question 4:

Examine the consistency of the system of equations. $x+y+z=1$
$2 x+3 y+2 z=2$
$a x+a y+2 a z=$
4 Answer
The given system of equations
is: $x+y+z=1$
$2 x+3 y+2 z=2$
$a x+a y+2 a z=4$
This system of equations can be written in the form $A X=B$, where
$A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2 a\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$.
Now,
$|A|=1(6 a-2 a)-1(4 a-2 a)+1(2 a-3 a)$
$\therefore \mathrm{A}$ is 4on-singular4 $a-3 a=a \neq 0$

Therefore, A^{-1} exists.
Hence, the given system of equations is consistent.

Question 5:

Examine the consistency of the system of equations. $3 x-y-2 z=2$
$2 y-z=-1$
$3 x-5 y=$
3 Answer
The given system of equations
is: $3 x-y-2 z=2$
$2 y-z=-1$
$3 x-5 y=3$
This system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{lll}3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$.
Now,
$|A|=3(0-5)-0+3(1+4)=-15+15=0$
$\therefore \mathrm{A}$ is a singular matrix.

Now,
$(\operatorname{adj} A)=\left[\begin{array}{lll}-5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6\end{array}\right]$
$\therefore($ adj $A) B=\left[\begin{array}{lll}-5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6\end{array}\right]\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]=\left[\begin{array}{l}-10-10+15 \\ -6-6+9 \\ -12-12+18\end{array}\right]=\left[\begin{array}{l}-5 \\ -3 \\ -6\end{array}\right] \neq O$
Thus, the solution of the given system of equations does not exist. Hence, the system of equations is inconsistent.

Question 6:
Examine the consistency of the system of
equations. $5 x-y+4 z=5$
$2 x+3 y+5 z=2$
$5 x-2 y+6 z=$
-1 Answer
The given system of equations
is: $5 x-y+4 z=5$
$2 x+3 y+5 z=2$
$5 x-2 y+6 z=-1$
This system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{lll}5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{r}5 \\ 2 \\ -1\end{array}\right]$.
Now,

$$
\begin{aligned}
|A| & =5(18+10)+1(12-25)+4(-4-15) \\
& =5(28)+1(-13)+4(-19) \\
& =140-13-76 \\
& =51 \neq 0
\end{aligned}
$$

$\therefore \mathrm{A}$ is non-singular.

Therefore, A^{-1} exists.
Hence, the given system of equations is consistent.

Question 7:
Solve system of linear equations, using matrix method.
$5 x+2 y=4$
$7 x+3 y=5$
Answer

The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}5 & 2 \\ 7 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 5\end{array}\right]$.
Now, $|A|=15-14=1 \neq 0$.
Thus, A is non-singular. Therefore, its inverse exists.
Now,
$A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)$
$\therefore A^{-1}=\left[\begin{array}{rr}3 & -2 \\ -7 & 5\end{array}\right]$
$\therefore X=A^{-1} B=\left[\begin{array}{rr}3 & -2 \\ -7 & 5\end{array}\right]\left[\begin{array}{l}4 \\ 5\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}12-10 \\ -28+25\end{array}\right]=\left[\begin{array}{c}2 \\ -3\end{array}\right]$
Hence, $x=2$ and $y=-3$.

Question 8:

Solve system of linear equations, using matrix method.
$2 x-y=-2$
$3 x+4 y=3$
Answer
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$.
Now,
$|A|=8+3=11 \neq 0$
Thus, A is non-singular. Therefore, its inverse exists.

Now,
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{11}\left[\begin{array}{cc}4 & 1 \\ -3 & 2\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{11}\left[\begin{array}{cc}4 & 1 \\ -3 & 2\end{array}\right]\left[\begin{array}{c}-2 \\ 3\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{11}\left[\begin{array}{l}-8+3 \\ 6+6\end{array}\right]=\frac{1}{11}\left[\begin{array}{l}-5 \\ 12\end{array}\right]=\left[\begin{array}{c}-\frac{5}{11} \\ \frac{12}{11}\end{array}\right]$
Hence, $x=\frac{-5}{11}$ and $y=\frac{12}{11}$.

Question 9:

Solve system of linear equations, using matrix method.
$4 x-3 y=3$
$3 x-5 y=7$
Answer
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}4 & -3 \\ 3 & -5\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ 7\end{array}\right]$.
Now,
$|A|=-20+9=-11 \neq 0$
Thus, A is non-singular. Therefore, its inverse exists.

Now,
$A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=-\frac{1}{11}\left[\begin{array}{ll}-5 & 3 \\ -3 & 4\end{array}\right]=\frac{1}{11}\left[\begin{array}{ll}5 & -3 \\ 3 & -4\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{11}\left[\begin{array}{ll}5 & -3 \\ 3 & -4\end{array}\right]\left[\begin{array}{l}3 \\ 7\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{11}\left[\begin{array}{ll}5 & -3 \\ 3 & -4\end{array}\right]\left[\begin{array}{l}3 \\ 7\end{array}\right]=\frac{1}{11}\left[\begin{array}{l}15-21 \\ 9-28\end{array}\right]=\frac{1}{11}\left[\begin{array}{l}-6 \\ -19\end{array}\right]=\left[\begin{array}{l}-\frac{6}{11} \\ -\frac{19}{11}\end{array}\right]$
Hence, $x=\frac{-6}{11}$ and $y=\frac{-19}{11}$.

Question 10:

Solve system of linear equations, using matrix
method. $5 x+2 y=3$
$3 x+2 y=$
5 Answer
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ 5\end{array}\right]$.
Now,
$|A|=10-6=4 \neq 0$
Thus, A is non-singular. Therefore, its inverse exists.

Question 11:

Solve system of linear equations, using matrix method.
$2 x+y+z=1$
$x-2 y-z=\frac{3}{2}$
$3 y-5 z=9$
Answer
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5\end{array}\right], X=\left[\begin{array}{c}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}1 \\ \frac{3}{2} \\ 9\end{array}\right]$.
Now,
$|A|=2(10+3)-1(-5-3)+0=2(13)-1(-8)=26+8=34 \neq 0$
Thus, A is non-singular. Therefore, its inverse exists.
Now, $A_{11}=13, A_{12}=5, A_{13}=3$
$A_{21}=8, A_{22}=-10, A_{23}=-6$
$A_{31}=1, A_{32}=3, A_{33}=-5$
$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{34}\left[\begin{array}{ccc}13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{34}\left[\begin{array}{ccc}13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5\end{array}\right]\left[\begin{array}{c}1 \\ \frac{3}{2} \\ 9\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{34}\left[\begin{array}{l}13+12+9 \\ 5-15+27 \\ 3-9-45\end{array}\right]$

$$
=\frac{1}{34}\left[\begin{array}{l}
34 \\
17 \\
-51
\end{array}\right]=\left[\begin{array}{c}
1 \\
\frac{1}{2} \\
-\frac{3}{2}
\end{array}\right]
$$

Hence, $x=1, y=\frac{1}{2}$, and $z=-\frac{3}{2}$.

Question 12:

Solve system of linear equations, using matrix
method. $x-y+z=4$
$2 x+y-3 z=0$
$x+y+z=$
2 Answer
The given system of equations can be written in the form of $A X=B$, where

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 1 & -3 \\
1 & 1 & 1
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and } B=\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right] .
$$

Now,

$$
|A|=1(1+3)+1(2+3)+1(2-1)=4+5+1=10 \neq 0
$$

Thus, A is non-singular. Therefore, its inverse exists.

$$
\text { Now, } \begin{aligned}
A_{11} & =4, A_{12}=-5, A_{13}=1 \\
A_{21} & =2, A_{22}=0, A_{23}=-2 \\
A_{31} & =2, A_{32}=5, A_{33}=3
\end{aligned}
$$

$$
\therefore A^{-1}=\frac{1}{|A|}(\text { adj } A)=\frac{1}{10}\left[\begin{array}{ccc}
4 & 2 & 2 \\
-5 & 0 & 5 \\
1 & -2 & 3
\end{array}\right]
$$

$$
\therefore X=A^{-1} B=\frac{1}{10}\left[\begin{array}{ccc}
4 & 2 & 2 \\
-5 & 0 & 5 \\
1 & -2 & 3
\end{array}\right]\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{10}\left[\begin{array}{c}
16+0+4 \\
-20+0+10 \\
4+0+6
\end{array}\right]
$$

$$
=\frac{1}{10}\left[\begin{array}{c}
20 \\
-10 \\
10
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]
$$

Hence, $x=2, y=-1$, and $z=1$.

Question 13:

Solve system of linear equations, using matrix method.
$2 x+3 y+3 z=$
$5 x-2 y+z=$
$-43 x-y-2 z$
$=3$ Answer
The given system of equations can be written in the form $A X=B$, where
$A=\left[\begin{array}{ccc}2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}5 \\ -4 \\ 3\end{array}\right]$.
Now,

$$
|A|=2(4+1)-3(-2-3)+3(-1+6)=2(5)-3(-5)+3(5)=10+15+15=40 \neq 0
$$

Thus, A is non-singular. Therefore, its inverse exists.

$$
\text { Now, } \begin{aligned}
A_{11} & =5, A_{12}=5, A_{13}=5 \\
A_{21} & =3, A_{22}=-13, A_{23}=11 \\
A_{31} & =9, A_{32}=1, A_{33}=-7
\end{aligned}
$$

$$
\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{40}\left[\begin{array}{ccc}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7
\end{array}\right]
$$

$$
\therefore X=A^{-1} B=\frac{1}{40}\left[\begin{array}{ccc}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7
\end{array}\right]\left[\begin{array}{l}
5 \\
-4 \\
3
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{40}\left[\begin{array}{l}
25-12+27 \\
25+52+3 \\
25-44-21
\end{array}\right]
$$

$$
=\frac{1}{40}\left[\begin{array}{l}
40 \\
80 \\
-40
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

Hence, $x=1, y=2$, and $z=-1$.

Question 14:
Solve system of linear equations, using matrix
method. $x-y+2 z=7$
$3 x+4 y-5 z=$
$-52 x-y+3 z=$
12 Answer
The given system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{c}7 \\ -5 \\ 12\end{array}\right]$.
Now,

$$
|A|=1(12-5)+1(9+10)+2(-3-8)=7+19-22=4 \neq 0
$$

Thus, A is non-singular. Therefore, its inverse exists.
Now, $A_{11}=7, A_{12}=-19, A_{13}=-11$

$$
\begin{aligned}
& A_{21}=1, A_{22}=-1, A_{23}=-1 \\
& A_{31}=-3, A_{32}=11, A_{33}=7
\end{aligned}
$$

$$
\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{4}\left[\begin{array}{ccc}
7 & 1 & -3 \\
-19 & -1 & 11 \\
-11 & -1 & 7
\end{array}\right]
$$

$$
\therefore X=A^{-1} B=\frac{1}{4}\left[\begin{array}{ccc}
7 & 1 & -3 \\
-19 & -1 & 11 \\
-11 & -1 & 7
\end{array}\right]\left[\begin{array}{l}
7 \\
-5 \\
12
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}
49-5-36 \\
-133+5+132 \\
-77+5+84
\end{array}\right]
$$

$$
=\frac{1}{4}\left[\begin{array}{l}
8 \\
4 \\
12
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]
$$

Hence, $x=2, y=1$, and $z=3$.
$A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$, find A^{-1}. Using A^{-1} solve the system of equations
If
$2 x-3 y+5 z=11$
$3 x+2 y-4 z=-5$
$x+y-2 z=-3$
Answer

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right] \\
& \therefore|A|=2(-4+4)+3(-6+4)+5(3-2)=0-6+5=-1 \neq 0
\end{aligned}
$$

Now, $A_{11}=0, A_{12}=2, A_{13}=1$

$$
\begin{aligned}
& A_{21}=-1, A_{22}=-9, A_{23}=-5 \\
& A_{31}=2, A_{32}=23, A_{33}=13
\end{aligned}
$$

$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=-\left[\begin{array}{lll}0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right]$
Now, the given system of equations can be written in the form of $A X=B$, where

$$
A=\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right], X=\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] \text { and } B=\left[\begin{array}{c}
11 \\
-5 \\
-3
\end{array}\right] .
$$

The solution of the system of equations is given by $X=A^{-1} B$.

$$
\begin{aligned}
X & =A^{-1} B \\
\Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] & =\left[\begin{array}{ccc}
0 & 1 & -2 \\
-2 & 9 & -23 \\
-1 & 5 & -13
\end{array}\right]\left[\begin{array}{c}
11 \\
-5 \\
-3
\end{array}\right] \\
& =\left[\begin{array}{c}
0-5+6 \\
-22-45+69 \\
-11-25+39
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
\end{aligned}
$$

Hence, $x=1, y=2$, and $z=3$.

Question 16:

The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60 . The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90 . The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.
Answer
Let the cost of onions, wheat, and rice per kg be Rs x , Rs y , and Rs z respectively.
Then, the given situation can be represented by a system of equations as:
$4 x+3 y+2 z=60$
$2 x+4 y+6 z=90$
$6 x+2 y+3 z=70$
This system of equations can be written in the form of $A X=B$, where
$A=\left[\begin{array}{lll}4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3\end{array}\right], X=\left[\begin{array}{c}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}60 \\ 90 \\ 70\end{array}\right]$.
$|A|=4(12-12)-3(6-36)+2(4-24)=0+90-40=50 \neq 0$
Now, $\quad A_{11}=0, A_{12}=30, A_{13}=-20$
$A_{21}=-5, A_{22}=0, A_{23}=10$
$A_{31}=10, A_{32}=-20, A_{33}=10$
$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{50}\left[\begin{array}{ccc}0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10\end{array}\right]$
Now,
$X=A^{-1} B$
$\Rightarrow X=\frac{1}{50}\left[\begin{array}{ccc}0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10\end{array}\right]\left[\begin{array}{l}60 \\ 90 \\ 70\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{50}\left[\begin{array}{l}0-450+700 \\ 1800+0-1400 \\ -1200+900+700\end{array}\right]$
$=\frac{1}{50}\left[\begin{array}{l}250 \\ 400 \\ 400\end{array}\right]$
$=\left[\begin{array}{l}5 \\ 8 \\ 8\end{array}\right]$
$\therefore x=5, y=8$, and $z=8$.
Hence, the cost of onions is Rs 5 per kg, the cost of wheat is Rs 8 per kg , and the cost of rice is Rs 8 per kg.

Question 1:

Prove that the determinant $\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|_{\text {is independent of }}$

$$
\begin{aligned}
& \text { Ө. Answer } \\
& \begin{array}{rlc}
\Delta & =\left|\begin{array}{ccc}
x & \sin \theta & \cos \theta \\
-\sin \theta & -x & 1 \\
\cos \theta & 1 & x
\end{array}\right| \\
& =x\left(x^{2}-1\right)-\sin \theta(-x \sin \theta-\cos \theta)+\cos \theta(-\sin \theta+x \cos \theta) \\
& =x^{3}-x+x \sin ^{2} \theta+\sin \theta \cos \theta-\sin \theta \cos \theta+x \cos ^{2} \theta \\
& =x^{3}-x+x\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =x^{3}-x+x \\
& \left.=x^{3} \text { (Independent of } \theta\right)
\end{array}
\end{aligned}
$$

Hence, is independent of θ.

Question 2:

Without expanding the determinant, prove that
$\left|\begin{array}{lll}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|=\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|$

Answer
L.H.S $=\left|\begin{array}{lll}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|$ $=\frac{1}{a b c}\left|\begin{array}{lll}a^{2} & a^{3} & a b c \\ b^{2} & b^{3} & a b c \\ c^{2} & c^{3} & a b c\end{array}\right| \quad\left[R_{1} \rightarrow a R_{1}, R_{2} \rightarrow b R_{2}\right.$, and $\left.R_{3} \rightarrow c R_{3}\right]$ $=\frac{1}{a b c} \cdot a b c\left|\begin{array}{ccc}a^{2} & a^{3} & 1 \\ b^{2} & b^{3} & 1 \\ c^{2} & c^{3} & 1\end{array}\right|$ [Taking out factor $a b c$ from C_{3}]

$$
\text { [Applying } \mathrm{C}_{1} \leftrightarrow \mathrm{C}_{3} \text { and } \mathrm{C}_{2} \leftrightarrow \mathrm{C}_{3} \text {] }
$$

Hence, the given result is proved.

Question 3:
Evaluate $\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$
Answer
$\Delta=\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$
Expanding along C_{3}, we have:

$$
\begin{aligned}
\Delta & =-\sin \alpha\left(-\sin \alpha \sin ^{2} \beta-\cos ^{2} \beta \sin \alpha\right)+\cos \alpha\left(\cos \alpha \cos ^{2} \beta+\cos \alpha \sin ^{2} \beta\right) \\
& =\sin ^{2} \alpha\left(\sin ^{2} \beta+\cos ^{2} \beta\right)+\cos ^{2} \alpha\left(\cos ^{2} \beta+\sin ^{2} \beta\right) \\
& =\sin ^{2} \alpha(1)+\cos ^{2} \alpha(1) \\
& =1
\end{aligned}
$$

Question 4:

If a, b and c are real numbers, and

$$
\Delta=\left|\begin{array}{lll}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|=0
$$

Show that either $a+b+c=0$ or $a=b=c$.
Answer

$$
\Delta=\left|\begin{array}{lll}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|
$$

Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right| \\
& =2(a+b+c)\left|\begin{array}{ccc}
1 & 1 & 1 \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$, we have:
$\Delta=2(a+b+c)\left|\begin{array}{ccc}1 & 0 & 0 \\ c+a & b-c & b-a \\ a+b & c-a & c-b\end{array}\right|$
Expanding along R_{1}, we have:

$$
\begin{aligned}
\Delta & =2(a+b+c)(1)[(b-c)(c-b)-(b-a)(c-a)] \\
& =2(a+b+c)\left[-b^{2}-c^{2}+2 b c-b c+b a+a c-a^{2}\right] \\
& =2(a+b+c)\left[a b+b c+c a-a^{2}-b^{2}-c^{2}\right]
\end{aligned}
$$

It is given that $\Delta=0$.
$(a+b+c)\left[a b+b c+c a-a^{2}-b^{2}-c^{2}\right]=0$
\Rightarrow Either $a+b+c=0$, or $a b+b c+c a-a^{2}-b^{2}-c^{2}=0$.

Now,

$a b+b c+c a-a^{2}-b^{2}-c^{2}=0$
$\Rightarrow-2 a b-2 b c-2 c a+2 a^{2}+2 b^{2}+2 c^{2}=0$
$\Rightarrow(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0$
$\Rightarrow(a-b)^{2}=(b-c)^{2}=(c-a)^{2}=0 \quad\left[(a-b)^{2},(b-c)^{2},(c-a)^{2}\right.$ are non-negative $]$
$\Rightarrow(a-b)=(b-c)=(c-a)=0$
$\Rightarrow a=b=c$
Hence, if $=0$, then either $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ or $\mathrm{a}=\mathrm{b}=\mathrm{c}$.

Question 5:

Solve the equations $\left|\begin{array}{ccc}x+a & x & x \\ x & x+a & x \\ x & x & x+a\end{array}\right|=0, a \neq 0$
Answer
$\left|\begin{array}{ccc}x+a & x & x \\ x & x+a & x \\ x & x & x+a\end{array}\right|=0$
Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$, we get:
$\left|\begin{array}{ccc}3 x+a & 3 x+a & 3 x+a \\ x & x+a & x \\ x & x & x+a\end{array}\right|=0$
$\Rightarrow(3 x+a)\left|\begin{array}{ccc}1 & 1 & 1 \\ x & x+a & x \\ x & x & x+a\end{array}\right|=0$
Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$, we have:
$(3 x+a)\left|\begin{array}{lll}1 & 0 & 0 \\ x & a & 0 \\ x & 0 & a\end{array}\right|=0$
Expanding along R_{1}, we have:
$(3 x+a)\left[1 \times a^{2}\right]=0$
$\Rightarrow a^{2}(3 x+a)=0$
But $a \neq 0$,
Therefore, we have:
$3 x+a=0$
$\Rightarrow x=-\frac{a}{3}$

Question 6:
Prove that $\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$
Answer

$$
\Delta=\left|\begin{array}{ccc}
a^{2} & b c & a c+c^{2} \\
a^{2}+a b & b^{2} & a c \\
a b & b^{2}+b c & c^{2}
\end{array}\right|
$$

Taking out common factors a, b, and c from $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3}, we have:

$$
\Delta=a b c\left|\begin{array}{ccc}
a & c & a+c \\
a+b & b & a \\
b & b+c & c
\end{array}\right|
$$

Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$, we have:
$\Delta=a b c\left|\begin{array}{ccc}a & c & a+c \\ b & b-c & -c \\ b-a & b & -a\end{array}\right|$
Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+\mathrm{R}_{1}$, we have:

$$
\Delta=a b c\left|\begin{array}{ccc}
a & c & a+c \\
a+b & b & a \\
b-a & b & -a
\end{array}\right|
$$

Applying $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{2}$, we have:

$$
\begin{aligned}
\Delta & =a b c\left|\begin{array}{ccc}
a & c & a+c \\
a+b & b & a \\
2 b & 2 b & 0
\end{array}\right| \\
& =2 a b^{2} c\left|\begin{array}{ccc}
a & c & a+c \\
a+b & b & a \\
1 & 1 & 0
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$, we have:
$\Delta=2 a b^{2} c\left|\begin{array}{ccc}a & c-a & a+c \\ a+b & -a & a \\ 1 & 0 & 0\end{array}\right|$
Expanding along R_{3}, we have:

$$
\begin{aligned}
\Delta & =2 a b^{2} c[a(c-a)+a(a+c)] \\
& =2 a b^{2} c\left[a c-a^{2}+a^{2}+a c\right] \\
& =2 a b^{2} c(2 a c) \\
& =4 a^{2} b^{2} c^{2}
\end{aligned}
$$

Hence, the given result is proved.

Question 8:

Let $A=\left[\begin{array}{rrr}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right]_{\text {verify that }}$
(i) $[\operatorname{adj} A]^{-1}=\operatorname{adj}\left(A^{-1}\right)$
(ii) $\left(A^{-1}\right)^{-1}=A$

Answer
$A=\left[\begin{array}{rrr}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right]$
$\therefore|A|=1(15-1)+2(-10-1)+1(-2-3)=14-22-5=-13$
Now, $A_{11}=14, A_{12}=11, A_{13}=-5$

$$
A_{21}=11, A_{22}=4, A_{23}=-3
$$

$$
A_{31}=-5, A_{32}=-3, A_{13}=-1
$$

$\therefore \operatorname{adj} A=\left[\begin{array}{lll}14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)$
$=-\frac{1}{13}\left[\begin{array}{lll}14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1\end{array}\right]=\frac{1}{13}\left[\begin{array}{lll}-14 & -11 & 5 \\ -11 & -4 & 3 \\ 5 & 3 & 1\end{array}\right]$
(i)

$$
\begin{aligned}
|\operatorname{adj} A| & =14(-4-9)-11(-11-15)-5(-33+20) \\
& =14(-13)-11(-26)-5(-13) \\
& =-182+286+65=169
\end{aligned}
$$

We have,

$$
\begin{aligned}
& \operatorname{adj}(\operatorname{adj} A)=\left[\begin{array}{lll}
-13 & 26 & -13 \\
26 & -39 & -13 \\
-13 & -13 & -65
\end{array}\right] \\
& \therefore[\operatorname{adj} A]^{-1}=\frac{1}{|\operatorname{adj} A|}(\operatorname{adj}(\operatorname{adj} A))
\end{aligned}
$$

$$
=\frac{1}{169}\left[\begin{array}{lll}
-13 & 26 & -13 \\
26 & -39 & -13 \\
-13 & -13 & -65
\end{array}\right]
$$

$$
=\frac{1}{13}\left[\begin{array}{lll}
-1 & 2 & -1 \\
2 & -3 & -1 \\
-1 & -1 & -5
\end{array}\right]
$$

$$
\text { Now, } A^{-1}=\frac{1}{13}\left[\begin{array}{lll}
-14 & -11 & 5 \\
-11 & -4 & 3 \\
5 & 3 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{14}{13} & -\frac{11}{13} & \frac{5}{13} \\
-\frac{11}{13} & -\frac{4}{13} & \frac{3}{13} \\
\frac{5}{13} & \frac{3}{13} & \frac{1}{13}
\end{array}\right]
$$

$$
\begin{aligned}
\therefore \operatorname{adj}\left(A^{-1}\right) & =\left[\begin{array}{lll}
-\frac{4}{169}-\frac{9}{169} & -\left(-\frac{11}{169}-\frac{15}{169}\right) & -\frac{33}{169}+\frac{20}{169} \\
-\left(-\frac{11}{169}-\frac{15}{169}\right) & -\frac{14}{169}-\frac{25}{169} & -\left(-\frac{42}{169}+\frac{55}{169}\right) \\
-\frac{33}{169}+\frac{20}{169} & -\left(-\frac{42}{169}+\frac{55}{169}\right) & \frac{56}{169}-\frac{121}{169}
\end{array}\right] \\
& =\frac{1}{169}\left[\begin{array}{lll}
-13 & 26 & -13 \\
26 & -39 & -13 \\
-13 & -13 & -65
\end{array}\right]=\frac{1}{13}\left[\begin{array}{lll}
-1 & 2 & -1 \\
2 & -3 & -1 \\
-1 & -1 & -5
\end{array}\right]
\end{aligned}
$$

Hence, $[\operatorname{adj} A]^{-1}=\operatorname{adj}\left(A^{-1}\right)$.
(ii)

We have shown that:
$A^{-1}=\frac{1}{13}\left[\begin{array}{lll}-14 & -11 & 5 \\ -11 & -4 & 3 \\ 5 & 3 & 1\end{array}\right]$
And, $\operatorname{adj}^{-1}=\frac{1}{13}\left[\begin{array}{lll}-1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5\end{array}\right]$
Now,
$\left|A^{-1}\right|=\left(\frac{1}{13}\right)^{3}[-14 \times(-13)+11 \times(-26)+5 \times(-13)]=\left(\frac{1}{13}\right)^{3} \times(-169)=-\frac{1}{13}$
$\therefore\left(A^{-1}\right)^{-1}=\frac{\operatorname{adj} A^{-1}}{\left|A^{-1}\right|}=\frac{1}{\left(-\frac{1}{13}\right)} \times \frac{1}{13}\left[\begin{array}{lll}-1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5\end{array}\right]=\left[\begin{array}{lll}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right]=A$
$\therefore\left(A^{-1}\right)^{-1}=A$

Question 9:
Evaluate $\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|$
Answer

$$
\Delta=\left|\begin{array}{ccc}
x & y & x+y \\
y & x+y & x \\
x+y & x & y
\end{array}\right|
$$

Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
2(x+y) & 2(x+y) & 2(x+y) \\
y & x+y & x \\
x+y & x & y
\end{array}\right| \\
& =2(x+y)\left|\begin{array}{ccc}
1 & 1 & 1 \\
y & x+y & x \\
x+y & x & y
\end{array}\right|
\end{aligned}
$$

Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$, we have:
$\Delta=2(x+y)\left|\begin{array}{ccc}1 & 0 & 0 \\ y & x & x-y \\ x+y & -y & -x\end{array}\right|$
Expanding along R_{1}, we have:

$$
\begin{aligned}
\Delta & =2(x+y)\left[-x^{2}+y(x-y)\right] \\
& =-2(x+y)\left(x^{2}+y^{2}-y x\right) \\
& =-2\left(x^{3}+y^{3}\right)
\end{aligned}
$$

Question 10:
Evaluate $\left|\begin{array}{ccc}1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y\end{array}\right|$
Answer

$$
\Delta=\left|\begin{array}{ccc}
1 & x & y \\
1 & x+y & y \\
1 & x & x+y
\end{array}\right|
$$

Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$, we have:

$$
\Delta=\left|\begin{array}{lll}
1 & x & y \\
0 & y & 0 \\
0 & 0 & x
\end{array}\right|
$$

Expanding along C_{1}, we have:
$\Delta=1(x y-0)=x y$

Question 11:

Using properties of determinants, prove that:
$\left|\begin{array}{lll}\alpha & \alpha^{2} & \beta+\gamma \\ \beta & \beta^{2} & \gamma+\alpha \\ \gamma & \gamma^{2} & \alpha+\beta\end{array}\right|=(\beta-\gamma)(\gamma-\alpha)(\alpha-\beta)(\alpha+\beta+\gamma)$
Answer
$\Delta=\left|\begin{array}{lll}\alpha & \alpha^{2} & \beta+\gamma \\ \beta & \beta^{2} & \gamma+\alpha \\ \gamma & \gamma^{2} & \alpha+\beta\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
\alpha & \alpha^{2} & \beta+\gamma \\
\beta-\alpha & \beta^{2}-\alpha^{2} & \alpha-\beta \\
\gamma-\alpha & \gamma^{2}-\alpha^{2} & \alpha-\gamma
\end{array}\right| \\
& =(\beta-\alpha)(\gamma-\alpha)\left|\begin{array}{ccc}
\alpha & \alpha^{2} & \beta+\gamma \\
1 & \beta+\alpha & -1 \\
1 & \gamma+\alpha & -1
\end{array}\right|
\end{aligned}
$$

Applying $R_{3} \rightarrow R_{3}-R_{2}$, we have:
$\Delta=(\beta-\alpha)(\gamma-\alpha)\left|\begin{array}{llc}\alpha & \alpha^{2} & \beta+\gamma \\ 1 & \beta+\alpha & -1 \\ 0 & \gamma-\beta & 0\end{array}\right|$

Expanding along R_{3}, we have:

$$
\begin{aligned}
\Delta & =(\beta-\alpha)(\gamma-\alpha)[-(\gamma-\beta)(-\alpha-\beta-\gamma)] \\
& =(\beta-\alpha)(\gamma-\alpha)(\gamma-\beta)(\alpha+\beta+\gamma) \\
& =(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)(\alpha+\beta+\gamma)
\end{aligned}
$$

Hence, the given result is proved.

Question 12:

Using properties of determinants, prove that:

$$
\left|\begin{array}{lll}
x & x^{2} & 1+p x^{3} \\
y & y^{2} & 1+p y^{3} \\
z & z^{2} & 1+p z^{3}
\end{array}\right|=(1+p x y z)(x-y)(y-z)(z-x)
$$

Answer

$$
\Delta=\left|\begin{array}{lll}
x & x^{2} & 1+p x^{3} \\
y & y^{2} & 1+p y^{3} \\
z & z^{2} & 1+p z^{3}
\end{array}\right|
$$

Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we have:

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
x & x^{2} & 1+p x^{3} \\
y-x & y^{2}-x^{2} & p\left(y^{3}-x^{3}\right) \\
z-x & z^{2}-x^{2} & p\left(z^{3}-x^{3}\right)
\end{array}\right| \\
& =(y-x)(z-x)\left|\begin{array}{lcr}
x & x^{2} & 1+p x^{3} \\
1 & y+x & p\left(y^{2}+x^{2}+x y\right) \\
1 & z+x & p\left(z^{2}+x^{2}+x z\right)
\end{array}\right|
\end{aligned}
$$

Applying $R_{3} \rightarrow R_{3}-R_{2}$, we have:

$$
\begin{aligned}
\Delta & =(y-x)(z-x)\left|\begin{array}{llc}
x & x^{2} & 1+p x^{3} \\
1 & y+x & p\left(y^{2}+x^{2}+x y\right) \\
0 & z-y & p(z-y)(x+y+z)
\end{array}\right| \\
& =(y-x)(z-x)(z-y)\left|\begin{array}{ccc}
x & x^{2} & 1+p x^{3} \\
1 & y+x & p\left(y^{2}+x^{2}+x y\right) \\
0 & 1 & p(x+y+z)
\end{array}\right|
\end{aligned}
$$

Expanding along R_{3}, we have:

$$
\begin{aligned}
\Delta & =(x-y)(y-z)(z-x)\left[(-1)(p)\left(x y^{2}+x^{3}+x^{2} y\right)+1+p x^{3}+p(x+y+z)(x y)\right] \\
& =(x-y)(y-z)(z-x)\left[-p x y^{2}-p x^{3}-p x^{2} y+1+p x^{3}+p x^{2} y+p x y^{2}+p x y z\right] \\
& =(x-y)(y-z)(z-x)(1+p x y z)
\end{aligned}
$$

Hence, the given result is proved.

Question 13:

Using properties of determinants, prove that:
$\left|\begin{array}{lcr}3 a & -a+b & -a+c \\ -b+a & 3 b & -b+c \\ -c+a & -c+b & 3 c\end{array}\right|=3(a+b+c)(a b+b c+c a)$
Answer
$\Delta=\left|\begin{array}{lcc}3 a & -a+b & -a+c \\ -b+a & 3 b & -b+c \\ -c+a & -c+b & 3 c\end{array}\right|$
Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$, we have:
$\Delta=\left|\begin{array}{ccc}a+b+c & -a+b & -a+c \\ a+b+c & 3 b & -b+c \\ a+b+c & -c+b & 3 c\end{array}\right|$

$$
=(a+b+c)\left|\begin{array}{ccc}
1 & -a+b & -a+c \\
1 & 3 b & -b+c \\
1 & -c+b & 3 c
\end{array}\right|
$$

Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$, we have:

$$
\Delta=(a+b+c)\left|\begin{array}{lll}
1 & -a+b & -a+c \\
0 & 2 b+a & a-b \\
0 & a-c & 2 c+a
\end{array}\right|
$$

Expanding along C_{1}, we have:

$$
\begin{aligned}
\Delta & =(a+b+c)[(2 b+a)(2 c+a)-(a-b)(a-c)] \\
& =(a+b+c)\left[4 b c+2 a b+2 a c+a^{2}-a^{2}+a c+b a-b c\right] \\
& =(a+b+c)(3 a b+3 b c+3 a c) \\
& =3(a+b+c)(a b+b c+c a)
\end{aligned}
$$

Hence, the given result is proved.

Question 14:

Using properties of determinants, prove that:
$\left|\begin{array}{lll}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|=1$

Answer
$\Delta=\left|\begin{array}{lll}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|$
Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1}$, we have:
$\Delta=\left|\begin{array}{ccl}1 & 1+p & 1+p+q \\ 0 & 1 & 2+p \\ 0 & 3 & 7+3 p\end{array}\right|$
Applying $R_{3} \rightarrow R_{3}-3 R_{2}$, we have:
$\Delta=\left\lvert\, \begin{array}{cc}1 & 1+p \\ 0 & 1 \\ 0 & 0\end{array}\right.$

$$
\left.\begin{gathered}
1+p+q \\
2+p \\
1
\end{gathered} \right\rvert\,
$$

Expanding along C_{1}, we have:
$\Delta=1\left|\begin{array}{cc}1 & 2+p \\ 0 & 1\end{array}\right|=1(1-0)=1$
Hence, the given result is proved.

Question 15:

Using properties of determinants, prove that:
$\left|\begin{array}{lll}\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\ \sin \beta & \cos \beta & \cos (\beta+\delta) \\ \sin \gamma & \cos \gamma & \cos (\gamma+\delta)\end{array}\right|=0$
Answer
$\Delta=\left|\begin{array}{lll}\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\ \sin \beta & \cos \beta & \cos (\beta+\delta) \\ \sin \gamma & \cos \gamma & \cos (\gamma+\delta)\end{array}\right|$

$$
=\frac{1}{\sin \delta \cos \delta}\left|\begin{array}{lll}
\sin \alpha \sin \delta & \cos \alpha \cos \delta & \cos \alpha \cos \delta-\sin \alpha \sin \delta \\
\sin \beta \sin \delta & \cos \beta \cos \delta & \cos \beta \cos \delta-\sin \beta \sin \delta \\
\sin \gamma \sin \delta & \cos \gamma \cos \delta & \cos \gamma \cos \delta-\sin \gamma \sin \delta
\end{array}\right|
$$

Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{3}$, we have:
$\Delta=\frac{1}{\sin \delta \cos \delta}\left|\begin{array}{lll}\cos \alpha \cos \delta & \cos \alpha \cos \delta & \cos \alpha \cos \delta-\sin \alpha \sin \delta \\ \cos \beta \cos \delta & \cos \beta \cos \delta & \cos \beta \cos \delta-\sin \beta \sin \delta \\ \cos \gamma \cos \delta & \cos \gamma \cos \delta & \cos \gamma \cos \delta-\sin \gamma \sin \delta\end{array}\right|$
Here, two columns C_{1} and C_{2} are identical.
$\therefore \Delta=0$.
Hence, the given result is proved.

Question 16:

Solve the system of the following equations
$\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4$
$\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1$
$\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2$
Answer
Let $\frac{1}{x}=p, \frac{1}{y}=q, \frac{1}{z}=r$.
Then the given system of equations is as follows:
$2 p+3 q+10 r=4$
$4 p-6 q+5 r=1$
$6 p+9 q-20 r=2$
This system can be written in the form of $A X=B$, where

$$
A=\left[\begin{array}{ccc}
2 & 3 & 10 \\
4 & -6 & 5 \\
6 & 9 & -20
\end{array}\right], X=\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right] \text { and } B=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right] .
$$

Now,

$$
\begin{aligned}
|A| & =2(120-45)-3(-80-30)+10(36+36) \\
& =150+330+720 \\
& =1200
\end{aligned}
$$

A
Thus, A is non-singular. Therefore, its inverse exists.
Now,
$A_{11}=75, A_{12}=110, A_{13}=72$
$A_{21}=150, A_{22}=-100, A_{23}=0$
$A_{31}=75, A_{32}=30, A_{33}=-24$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A$

$$
=\frac{1}{1200}\left[\begin{array}{lll}
75 & 150 & 75 \\
110 & -100 & 30 \\
72 & 0 & -24
\end{array}\right]
$$

Now,

$$
X=A^{-1} B
$$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\frac{1}{1200}\left[\begin{array}{lll}
75 & 150 & 75 \\
110 & -100 & 30 \\
72 & 0 & -24
\end{array}\right]\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right] \\
& =\frac{1}{1200}\left[\begin{array}{c}
300+150+150 \\
440-100+60 \\
288+0-48
\end{array}\right] \\
& =\frac{1}{1200}\left[\begin{array}{l}
600 \\
400 \\
240
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{3} \\
\frac{1}{5}
\end{array}\right] \\
& \therefore p=\frac{1}{2}, q=\frac{1}{3} \text {, and } r=\frac{1}{5} \\
& \text { Hence, } x=2, y=3 \text {, and } z=5 \text {. }
\end{aligned}
$$

Question 17:
Choose the correct answer.
If a, b, c, are in A.P., then the determinant
$\left|\begin{array}{lll}x+2 & x+3 & x+2 a \\ x+3 & x+4 & x+2 b \\ x+4 & x+5 & x+2 c\end{array}\right|$
A. 0 B. 1 C. x D. $2 x$

Answer
Answer: A

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
x+2 & x+3 & x+2 a \\
x+3 & x+4 & x+2 b \\
x+4 & x+5 & x+2 c
\end{array}\right| \\
& =\left|\begin{array}{lll}
x+2 & x+3 & x+2 a \\
x+3 & x+4 & x+(a+c) \\
x+4 & x+5 & x+2 c
\end{array}\right| \quad(2 b=a+c \text { as } a, b, \text { and } c \text { are in A.P. })
\end{aligned}
$$

Applying $R_{1} \rightarrow R_{1}-R_{2}$ and $R_{3} \rightarrow R_{3}-R_{2}$, we have:
$\Delta=\left|\begin{array}{lll}-1 & -1 & a-c \\ x+3 & x+4 & x+(a+c) \\ 1 & 1 & c-a\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}+R_{3}$, we have:
$\Delta=\left|\begin{array}{ccc}0 & 0 & 0 \\ x+3 & x+4 & x+a+c \\ 1 & 1 & c-a\end{array}\right|$
Here, all the elements of the first row (R_{1}) are zero.
Hence, we have $=0$.
The correct answer is A.

Question 18:
Choose the correct answer.

If x, y, z are nonzero real numbers, then the inverse of matrix

$$
A=\left[\begin{array}{lll}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right]_{\text {is }}
$$

A. $\left[\begin{array}{lll}x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1}\end{array}\right]_{\text {B. }} x y z\left[\begin{array}{lll}x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1}\end{array}\right]$
C. $\frac{1}{x y z}\left[\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right]_{\text {D. }} \frac{1}{x y z}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Answer
Answer: A
$A=\left[\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right]$
$\therefore|A|=x(y z-0)=x y z \neq 0$

Now, $A_{11}=y z, A_{12}=0, A_{13}=0$
$A_{21}=0, A_{22}=x z, A_{23}=0$
$A_{31}=0, A_{32}=0, A_{33}=x y$
$\therefore \operatorname{adj} A=\left[\begin{array}{lll}y z & 0 & 0 \\ 0 & x z & 0 \\ 0 & 0 & x y\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A$
$=\frac{1}{x y z}\left[\begin{array}{lll}y z & 0 & 0 \\ 0 & x z & 0 \\ 0 & 0 & x y\end{array}\right]$
$=\left[\begin{array}{lll}\frac{y z}{x y z} & 0 & 0 \\ 0 & \frac{x z}{x y z} & 0 \\ 0 & 0 & \frac{x y}{x y z}\end{array}\right]$
$=\left[\begin{array}{lll}\frac{1}{x} & 0 & 0 \\ 0 & \frac{1}{y} & 0 \\ 0 & 0 & \frac{1}{z}\end{array}\right]=\left[\begin{array}{lll}x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1}\end{array}\right]$
The correct answer is A .

Question 19:

Choose the correct answer.
Let $A=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$, where $0 \leq \theta \leq 2 \pi$, then
A. $\operatorname{Det}(A)=0$
B. $\operatorname{Det}(A) \in(2, \infty)$
C. $\operatorname{Det}(A) \in(2,4)$

Answer
sAnswer: D
$A=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$
$\therefore|A|=1\left(1+\sin ^{2} \theta\right)-\sin \theta(-\sin \theta+\sin \theta)+1\left(\sin ^{2} \theta+1\right)$
$=1+\sin ^{2} \theta+\sin ^{2} \theta+1$
$=2+2 \sin ^{2} \theta$
$=2\left(1+\sin ^{2} \theta\right)$
Now, $0 \leq \theta \leq 2 \pi$
$\Rightarrow 0 \leq \sin \theta \leq 1$
$\Rightarrow 0 \leq \sin ^{2} \theta \leq 1$
$\Rightarrow 1 \leq 1+\sin ^{2} \theta \leq 2$
$\Rightarrow 2 \leq 2\left(1+\sin ^{2} \theta\right) \leq 4$
$\therefore \operatorname{Det}(A) \in[2,4]$
The correct answer is D.

