Class XII Chapter 5 — Continuity and Differentiability

Maths

Exercise 5.1

Question 1:

Prove that the functionj (‘) i is continuous

at¥ = O,atx=-3and atx =35, Answer

The given function is f(x) = 5x -3
Atx=0,£(0)=5x0-3=3
Iimf(x(): lim(5x—3) =5x0-3=-

sAim f(x)= £(0)

x—0

Therefore, f is continuous at x = 0
Atx——3j( ) ( ) 3=-18

lim 7 (x) = lim (5x3) =5x(-3)-3=-18
L lim f(x)= f(-3)

Therefore, f is continuous at x = -3

Atx = 5.,_/'(. ) /(5) =5x5-3=25-3=22
lim f(x)=lim(5x-3)=5x5-3=22

s lim £ (x)= £(5)

Therefore, f is continuous at x = 5

Question 2:

Examine the continuity of the function f('\.) =2x'-latx=3 .
Answer

The given function isf(x) =2x% -1
Atx=3,f(x)=f(3)=2x3"-1=17

lim f(x)=lim(2x* ~1) =2x3" ~1=17

~lim f(x) = £(3)

Thus, f is continuous at x = 3
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Examine the following functions for continuity.

: T |_ y
(a) /(\):\—S(b) f('\)_\—Sq-\’#-S
./'(-\')='rh_25,x¢—5
(c) x+5 (d)

J(x)= "“_5 Answer

(a) The given function is/ (x)=x-5

It is evident that f is defined at every real number k and its value at k is k — 5.

lim f/(x)=lim(x—5)=k-5= f(k)
It is also observed that, 4 x3k

~lim £ (x)= £ (k)

Hence, f is continuous at every real number and therefore, it is a continuous function.

(b) The given function is X—=2
For any real number k # 5, we obtain
1 1
llm f(x)=lim——
=k x =35 " k-5
1
Also, f —_—
(K)=p— (As
lilr:_/'(.\"):_ (A)

4J|
—~—

Hence, f is continuous at every point in the domain of f and therefore, it is a

continuous function.

Y

S

o
n

f(x)=

(c) The given function is X+

JXF -

W

For any real number c # =5, we obtain
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lim f(x) = Iup X

X=¢

=9
+5 e x4 e
(c-

) ) =(c-5) (ase#-5)

t

Also, f(¢) = (c+
wAim £ (x) = f(c )

o

Hence, f is continuous at every point in the domain of f and therefore, it is a

continuous function.
JS -x,ifx<5

|x=5,ifx=5

f(x)=|e-3=
(d) The given function is

This function f is defined at all points of the real line.

Let c be a point on a real line. Then,c < 50orc=50rc>5

Casel:c< 5

Then, f(c)=5-c¢
]ln]f(\’): I1m(5~- .’():5" c
~im f(x)= f(c)

Therefore, f is continuous at all real numbers less than 5.

Casell:c=5
Then, fle)=r (S)
lim f(x)=lim(5-x)=(5-5)=0

I

(5-5)=0

Iim f(x)= lim (_r— 5)=0

hm f{x}= hm f(x)=f(e)

Therefore, f is continuous at x = 5
CaseIll: c > 5

Then, f(c)=f(5)=c-5

llmf( ()= 1m[ 5]=('—5

~lim f(x) = 1 (c)

Therefore, f is continuous at all real numbers greater than 5.

2 _ i (o 5)(:_5) =lim(x-5)=(c-5)

Hence, f is continuous at every real number and therefore, it is a continuous function.
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_/'( ‘) ="

Prove that the function is continuous at x = n, where n is a positive
integer. Answer

The given function is f (x) = x"

It is evident that f is defined at all positive integers, n, and its value at n is n".

Then, lim f(n)= lim ( x” ) =n"
o lim f(x)=f(n)

Therefore, f is continuous at n, where n is a positive integer.

Is the function f defined by
_ (x, ifx<1

flx)=4_ ..

: 5, ifx>1

continuous at x = 0? At x = 1? At x =

2? Answer

s BedRw€l
/(\): g
The given function f is 15, ifx>1
At x =0,
It is evident that f is defined at 0 and its value at 0 is 0.

Then, lim f(x)= limx=0

x—0 x—0

slim f(x)=£(0)

Therefore, f is continuous at x = 0
Atx =1,

f is defined at 1 and its value at 1 is
1. The left hand limitof fat x = 1 is,

lim /(x)=limx=1

x|

The right hand limit of fat x = 1 is,
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lim f(x)=1lim(5)=5

x>l x>

sim f(x) # lim f(x)

vl =1
Therefore, f is not continuous at x = 1
Atx = 2,
f is defined at 2 and its value at 2 is 5.
Then, lim f(x)=lim(5)=5
slim f(x)= £(2)

Therefore, f is continuous at x = 2

Find all points of discontinuity of f, where f is defined by
( ) IZ.\' +3, ifx<2

x)=
TV =953, if x>

Answer
[2.\' +3, ifx<2

- 12x =3, ifx>2

f(x)

The given function f is

It is evident that the given function f is defined at all the points of the real

line. Let c be a point on the real line. Then, three cases arise.
(ic< 2

(ic>2

(iii) c = 2

Case (i)c < 2

Then, f(¢)=2c+3

l\jr}] f(x)= l\_il?j (2x+3)=2c+3

lim £ (x)= £ (c)

Therefore, f is continuous at all points x, such that x < 2
Case (ii)c > 2
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Then, /' (¢)=2c¢-3

lim f (x) = lim(2x~3)=2¢ -3

sim f(x)= f(e)

Therefore, f is continuous at all points x, such that x > 2

Case (iii)c =2

Then, the left hand limitof fat x = 2 is,

lim /' (x)=lim (2x+3)=2x2+3=7

The right hand limit of fat x = 2 is,

lim f(x)=lim(2x-3)=2x2-3=]1

It is observed that the left and right hand limit of f at x = 2 do not

coincide. Therefore, f is not continuous at x = 2
Hence, x = 2 is the only point of discontinuity of f.

Find all points of discontinuity of f, where f is defined by

\‘ +3,ifx<-3

6x+2,ifx=3

f(x) T 2x,if-3<x<3

Answer

.\'l +3==x+3, ifx<-3

_/’(.\')= 2x, if-3<x<3
16.\'+2. ifx=3

The given function fis
The given function f is defined at all the points of the real line.
Let c be a point on the real line.

Case I:

If ¢ <=3, thenf(c)=—-c+3

lim £ (x) = lim(=x+3) = —c+3

sdim f(x)= f(f“)

V=0
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Therefore, f is continuous at all points x, such that x < -3
Case II:

If¢c=-3, thenf(-3)=-(-3)+3=6

lim f(x)= lim (-x+3)=-(-3)+3=6

x—-3

lim_f(x)= lim (-2x)=-2x(-3)=6
lim 7(x)= 1)

Therefore, f is continuous at x = -3
Case III:

If —=3<c¢<3, thenf(c)=-2c and lim f(x)=lim(-2x)=-2¢

L= X

slim f(x)= 1 (c)

Therefore, f is continuous in (-3, 3).
Case 1V:
If c = 3, then the left hand limit of fat x = 3 is,

lim f/(x)=lim(-2x)=-2x3=-6

x—3

The right hand limit of fat x = 3 is,

lim £ (x)=lim (6x+2)=6x3+2=20

It is observed that the left and right hand limit of f at x = 3 do not
coincide. Therefore, f is not continuous at x = 3
Case V:

If ¢ >3, thenf(c) =6¢+2 and Iimf(_x) =lim (6x+ 2) =6c+2
l_im f(x) =f(c)

Therefore, f is continuous at all points x, such that x > 3

Hence, x = 3 is the only point of discontinuity of f.

Find all points of discontinuity of f, where f is defined by
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|2 .
X I— ifx=0
./(-\')= X
]0, ifx=0
Answer
u ifx=0
f(-")= X
0, 1fx=0

The given function f is

It is known that,* < 0= x|=—xandx>0= |x|]=x

Therefore, the given function can be rewritten as

l'jf;x:—l ifx<0
X X

f(x)=10, ifx=0

B2 iexso
X X

The given function f is defined at all the points of the real line.
Let c be a point on the real line.

Case I:

If ¢ <0, thenf(c)=-1

lim £ (x) = lim(~1) =1

slim f(x) = f(e)

Therefore, f is continuous at all points x < 0
Case II:
If ¢ = 0, then the left hand limit of fat x = 0 is,

lim f(x)= lim (-1)=-1

x>0

The right hand limit of fat x = 0 is,

lim /(x)=lim(1)=1

x— x—0" i

It is observed that the left and right hand limit of f at x = 0 do not

coincide. Therefore, f is not continuous at x = 0
Case III:
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If¢ =0, thenf(c)=1
lim £ (x)=1lim(1) =1

cAim f (x)=7(e)

Therefore, f is continuous at all points x, such that x > 0

Hence, x = 0 is the only point of discontinuity of f.

Find all points of discontinuity of f, where f is defined by

; JL ifx<0
S (x)=1 M
l—l, ifx=0
Answer
3 J,L ifx<0
f(x)= lpr|
The given function f is -1, 1fx=0
X < 0 = i\i ==X

It is known that,

Therefore, the given function can be rewritten as

_ ["' =X =_1,ifx<0
/ (\') — |\" =k
]—1, ifx=0

.

=> f(x)=-1forallxeR

lim f(x)=lim(-1)=-1
Let c be any real number. Then, **¢ X3¢

f(c)==1=lim f(x)
Also, ) s A
Therefore, the given function is a continuous function.

Hence, the given function has no point of discontinuity.

Find all points of discontinuity of f, where f is defined by
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£(x)= [.t+|, ifx=1
/() _1.\': +1, ifx <1

Answer

x+1, ifx2>1

x+1 ifx <l

./'(.\-):{

The given function f is
The given function f is defined at all the points of the real line.
Let c be a point on the real line.

Case I:

If ¢ <1, then f(¢)=c’ +1 and lim f(x) = I‘iJl](x: +1)=c* +1
<. lim S (x)=f(¢)

Therefore, f is continuous at all points x, such that x < 1
Case II:

Ife=1, thenf(c)=f(1)=1+1=2

The left hand limitof fat x = 1 is,

lim £ (x)=lim(x* +1)=1"+1=2

x>l r—1

The right hand limit of fat x = 1 is,
IIIIII f(x)= v!il"sl(.\'+ )=1+1=2
~lim f(x)=£(1)

Therefore, fis continuous at x = 1
Case III:

Ifc>1, thenf(c)=c+l

lim f(x)=lim(x+1)=c+1

~im f(x) = £ (e)

Therefore, f is continuous at all points x, such that x > 1

Hence, the given function f has no point of discontinuity.

Find all points of discontinuity of f, where f is defined by
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o J\' -3, ifx<2

7(x)=1",
( ) lx +1, ifx>2
Answer
: -3, ifx<2
j(,\‘):/{.3 I R
The given function f is x'+ 1ifx>2

The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I:

Ife <2, thenf(c)=c’—3and lim f(x)= Iim(.\'3 —3) =c'-3
~im f(x)= f(c)

Therefore, f is continuous at all points x, such that x < 2
Case II:

Ife=2, thenf(c)= f(2)=2"-3=5

llimv_,f( )—|Il'l'l(t' =2-3=5

-3)
lim flx)= Ilm(m +1)=27+
< im f(x) = £(2)

Therefore, f is continuous at x = 2
Case III:
[fc>2, thenf(c)=c" +1

lim f(x)=lim(x* +1)=c” +1

X

sdim f(x)=f(c)

Therefore, f is continuous at all points x, such that x > 2

Thus, the given function f is continuous at every point on the real
line. Hence, f has no point of discontinuity.

Find all points of discontinuity of f, where f is defined by
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(10 f
x'—1, ifx<l

~
—
=
—
I
PR —

X ifx>1

(10 h
; x -1, ifx<1
A/('\‘):f{ 3 .
The given function f is X5 ifx>1

The given function f is defined at all the points of the real line.
Let c be a point on the real line.

Case I:

Ife <1, thenf(c)=c"~1and lim f(x)= |‘il'11(,\"“—|):("“—|
- lim f(x)=r(c)

Therefore, f is continuous at all points x, such that x < 1

Case II:
If c = 1, then the left hand limitof fat x = 1 is,

lim f(x)=lim (x"* —1)=1"~1=1-1=0

x—1
The right hand limit of fat x = 1 is,
lim f(x) = lim(x*)=1" =1
x—l 2 1" £
It is observed that the left and right hand limit of f at x = 1 do not

coincide. Therefore, f is not continuous at x = 1
Case III:

Ife>1, thenf(c)=c"
lim £ (x) = lim(x*) = ¢’
~limf(x)=£(e)

Therefore, f is continuous at all points x, such that x > 1

Thus, from the above observation, it can be concluded that x = 1 is the only point

of discontinuity of f.

Is the function defined by
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7(x) [.\'+5, ifx<l
xX)=
' 1.\' -5, ifx>1

a continuous

function? Answer

[.\~+5, ifx<l

f(x)= 1.(—5‘ ifx>1

The given function is.
The given function f is defined at all the points of the real line.
Let c be a point on the real line.

Case I:

N

If ¢ <1, thenf(c)=c+5and lim f(x)=lim(x+5)=c+

X

sdim f£(x)= f(c)

Therefore, f is continuous at all points x, such that x < 1
Case II:

Ifc=1, thenf(1)=1+5=6

The left hand limit of f at x = 1 is,

!ilP flx)= !il}] (x+5)=1+5=6

The right hand limit of fat x = 1 is,

lim f(x)= lim (x-5)=1-5=—4

It is observed that the left and right hand limit of f at x = 1 do not

coincide. Therefore, f is not continuous at x = 1
Case III:

If ¢ >1, thenf(c)=c~5and lim f(x) =lim(x-5)=c-5

lim £ (x)= /()

Therefore, f is continuous at all points x, such that x > 1

Thus, from the above observation, it can be concluded that x = 1 is the only point

of discontinuity of f.
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Discuss the continuity of the function f, where f is defined by
J3, if0<x<l

f(x)=44,ifl<x<3
IS. if3<x<10

Answer
J3, if0<x<l

f(x)= l-t ifl<x<3

5,if3<x<
The given function is 1 x=10

The given function is defined at all points of the interval [0, 10].
Let c be a point in the interval [0, 10].

Case I:

If0<c<l, thenf(c)=3and [iﬂ)_f(x) = h_r31(3) =3
l.i'P f(x)=1f(c)

Therefore, f is continuous in the interval [0, 1).
Case II:

If¢=1, thenf(3)=3

The left hand limitof fat x = 1 is,

I/ ()= i) =2

The right hand limit of fat x = 1 is,

‘lipll Sf(x)= |211(4) =4

It is observed that the left and right hand limits of f at x = 1 do not

coincide. Therefore, f is not continuous at x = 1
Case III:

If1<c<3. thenf(c)=4 and I\u’n Fix)= l\lm(-l) =4

lil;l:l £x)=7F(e)

Therefore, f is continuous at all points of the interval (1, 3).
Case IV:

If ¢ =3, thenf(c)=5
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The left hand limit of fat x = 3 is,

lim f(x)= lim (4)=4

The right hand limit of f at x = 3 is,

lim £ (x) = lim (5) =

It is observed that the left and right hand limits of f at x = 3 do not

coincide. Therefore, f is not continuous at x = 3
Case V:

If 3<¢ <10, thenf(c)=5 and lim f(x)=1lim(5)=5

lim f(x) = f(c)
Therefore, f is continuous at all points of the interval (3, 10].

Hence, f is not continuous at x =1 and x =3

Discuss the continuity of the function f, where f is defined by
2x, ifx<0
f(x)=40, if0<x<I

|4x, ifx>1

Answer

JZ x, ifx<0
f(x)=40, if0<x<I
The given function is 4x, ifx>1
The given function is defined at all points of the real line.
Let c be a point on the real line.

Case I:

If ¢ <0, thenf(c)=2c

l‘_il:q f(x)= lIir)n(Q_\') =2¢

- lim f(x)=f(c)

Therefore, f is continuous at all points x, such that x < 0
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Case II:

If¢=0, thenf(c)=7(0)=0

The left hand limit of fat x = 0 is,
\IIT f(x)= In? (2x)=2x0=0

The right hand limit of fat x = 0 is,
lim f(x)=1im(0)=0

x—( r—l

sdim f(x)=£(0)

>l g
Therefore, f is continuous at x = 0
Case III:

If0<e<l, then_f'(.r) =0 and l‘il)n f(\) = Iu}](O) =0

I‘_il)n /(\) = _f(c)

Therefore, f is continuous at all points of the interval (0, 1).
Case IV:

Ifc=1, then f(c)=f(1)=0

The left hand limit of fat x = 1 is,

S lx)= I (0)=0

The right hand limit of fat x = 1 is,

!Erll f(x)= ml (4x)=4x1=4

It is observed that the left and right hand limits of f at x = 1 do not

coincide. Therefore, f is not continuous at x = 1
Case V:

If ¢ <1, then f(¢) =4c and lim f(x) =lim(4x)=4c
slim f(x)= f(¢)
Therefore, f is continuous at all points x, such that x > 1

Hence, f is not continuous only at x = 1

Discuss the continuity of the function f, where f is defined by
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(22, ifx<-1
/(\) =42x, if —1<x<1

12. ifx>1
Answer

J'—Z, ifx<-—1
f(x)=12x, if —-1<x<1
9. s

The given function f is [-v ifx>1

The given function is defined at all points of the real line.
Let c be a point on the real line.

Case I:

If ¢ < -1, then f(c)=-2 and I\ile(.\')Z I“iT( 2)=-2

s lim £ (x) = f(c)

Therefore, f is continuous at all points x, such that x < —1
Case II:

Ife=-1, thenf(c)=f(-1)=-2

The left hand limit of fat x = —1 is,

lim f(x)= lim (-2)=-2

The right hand limit of fat x = =1 is,

lim f(x)= lim (2x)=2x(-1)=-2
x—=—1" -1 y

< lim f(x)=r(-1)

——

Therefore, f is continuous at x = —1
Case III:

If -1<c<], thenf(c)=2¢

Lim_ % (\) = l_im(2.\') =2c

~im f(x)=f(c)

Therefore, f is continuous at all points of the interval (-1, 1).
Case 1V:
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Ifc=1, thenf(c)=f(1)=2x1=2
The left hand limitof fat x = 1 is,

lim f(x)= lim (2x)=2x1=2

x—l

The right hand limit of fat x = 1 is,

lim f'(x)=1lim2=2

x|
clim f(x)= f(c)

Therefore, f is continuous at x = 2
Case V:

Ifc>1, thenf(c)=2 and lim /' (x)=1im(2)=2
lim f'(x)=f(c)
Therefore, f is continuous at all points x, such that x > 1

Thus, from the above observations, it can be concluded that f is continuous at all
points of the real line.

Find the relationship between a and b so that the function f defined by
ax+1, ifx<3

f(x =[ i

71 ) 1/).\'»:~3, ifx>3

is continuous at x =

3. Answer

-

[u.\' +1, ifx<3

|bx+3, ifx>3

f(x)

The given function f is

If f is continuous at x = 3, then
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lim f(x)=lim f(x)=7(3) (1)
Also,

lim f(x)=lim(ax+1)=3a+1

lim f(x)=lim(bx+3)=3b+3
/(3)=3a+1

Therefore, from (1), we obtain
Ja+1=3h+3=3a+]

=3a+1=3h+3
=3a=3h+2

)
=a=b+—
3
2
a=b+—
Therefore, the required relationship is given by, 3
Question 18:

For what value of 4 is the function defined by
, Alx*-2x ,ifx<0
r)= {12
4x+1, ifx>0

continuous at x = 0? What about continuity at x =

1? Answer

/_(-\_) i {ft(x: - 2.\'), ifx<0

The given function f is x+ly iEx:>0

If f is continuous at x = 0, then
lim f(x)=lim f(x)= f(0)
= lim 2(x* - 2x) = lim (4x+1) = 2(0° - 2x0)

= A(07=2x0)=4x0+1=0
= (0 =1=0, which is not possible

Therefore, there is no value of A for which f is continuous at x = 0
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Atx =1,
f(l)=dx+1=4x1+1=5
lim(4x+1)=4x1+1=5

x>l

lim /£ (x)= /(1)

Therefore, for any values of A, f is continuous at x = 1

Show that the function defined by g(.\‘) - '\'_["‘] is discontinuous at all integral point.

Here [‘] denotes the greatest integer less than or equal to x.

Answer

The given function isg("‘) =x—[x]
It is evident that g is defined at all integral points.

Let n be an integer.
Then,

g(n)=n-[n]=n-n=0
The left hand limit of f at x = n is,

lim g(x)= \Iig} (x—[x])= ‘Inp (x)—lim[x]=n—(n-1)=1

x> X—n

The right hand limit of f at x = n is,
lim g(x) = lim (x—[x]) = lim (x) - lim [x] =n—n =0
It is observed that the left and right hand limits of f at x = n do not

coincide. Therefore, f is not continuous at x = n

Hence, g is discontinuous at all integral points.

"(x)=x*—sinx+5
Is the function defined by J ( \) v continuous at x =
p? Answer

(x)=x"—sinx+5
The given function is‘/ (\) T
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It is evident that f is defined at x = p
Atx=m, f(x)= f(r)=n"-sinn+5=m"-0+5=7"+5
Consider lim /(x) = lim(x* —sin x +5)

XK A%

Putx=mn+h
If x — m, then it is evident that h— 0

clim f(x) = lim (x® —sinx + 5]

X—*X A=

=lim _{:n + h)" —sin(n+h)+ 5}

=

=lim(x+h) - lim sin (7 + h)+1im5

h—0 fe—s(}

=(n+ 0-'): |i1‘n[si117tcosh+ L:U:-‘;nsinh] +5

fr—sl)

7° — limsin mwcosh— lim cos wsinh+ 5

fi—ll

b=
=7 —sinncos0—cosmsin0+5
=" —0x1—(=1)x0+5

Therefore, the given function f is continuous at x = n

Discuss the continuity of the following functions.

(@) f (x) = sin x + cos x

(b) f (x) = sin X — cos x

(c) f (x) = sin x x cos

X Answer

It is known that if g and h are two continuous functions, then

g+h g—h and gh 50 5150 continuous.

It has to proved first that g (x) = sin x and h (x) = cos x are continuous

functions. Let g (x) = sin x

It is evident that g (x) = sin x is defined for every real
number. Let c be a real number. Put x = c + h
Ifx->c,thenh—-20
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g(c)=sinc

limg(x)=limsinx
X% e
= limsin(c+ h)
fr=l} i

— lim[sin cecosh+ cosesin h]
Jr—ad

= IJ}l:rll‘(im ceosh)+ ];lun (coscsinh)
=sinccos0+cosesinl
=sinc+0
=sin¢
limg(x)=gl(c)
Therefore, g is a continuous function.
Let h (x) = cos x
It is evident that h (x) = cos x is defined for every real number.
Let c be a real number. Put x = c + h
If x - ¢, thenh —
Oh(c) =cosc
lim A( x)= lim cos x

= lim COS((' - h)

fr—0

=lim [cos ccosh—sincsin h]

Je—sl)
=limcosccosh—limsinesinh
fe—( fa—0
=cosccos(—sincsin(
=coscx]-=sinex(
=cosc

<. lim h(x)=h(c)

Therefore, h is a continuous function.

Therefore, it can be concluded that

(@) f(x) =g (x) + h(x) =sin x + cos x is a continuous function
(b) f (x) =g (x) — h(x) =sin x — cos x is a continuous function

(c)f(x) =g (x) x h(x) =sin x x cos x is a continuous function
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Discuss the continuity of the cosine, cosecant, secant and cotangent
functions, Answer

It is known that if g and h are two continuous functions, then

h(x)
g(x)

, €(x)# 0 is continuous

(if) # g(x)#0 is continuous

g(x)

(iii) : , h(x)= 0 is continuous

h(x)

It has to be proved first that g (x) = sin x and h (x) = cos x are continuous
functions. Let g (x) = sin x

It is evident that g (x) = sin x is defined for every real

number. Let ¢ be a real number. Put x = c + h

If x ~>c,thenh 20
g(¢)=sine
limg(x)=limsin x

=limsin(c+h)
. )

-0
= lhh}l). [sin ccosh+coscsin h]
= I,}T.(Si" ccosh)+ Ibilp) (coscsinh)
=sinccos0+coscsin
=sin¢+0
=sin¢
limg(x)=g(c)
Therefore, g is a continuous function.
Let h (x) = cos x
It is evident that h (x) = cos x is defined for every real number.
Let c be a real number. Put x = c+ h
If x ® ¢, then h ®
0O h(c)=cosc
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lim A(x) = limcos x

K

=lim cos(c+h)

L

= lim [cos ccosh—sincsin h]

Te—sil

=limcosccosh—limsinesin ki

=0 fi—=l

=cosccosl=sinesin0

=coscx]=sinex0

=cosc
slimhb(x)=h(c)

X
Therefore, h (x) = cos x is continuous function.

It can be concluded that,

cosecx = , sinx # 0 is continuous

sinx
= COSeC X, X # N7 (n € Z) is continuous

Therefore, cosecant is continuous except at x = np, n iz

1 : :
secx = . cosx # 0 is continuous
cos X

=secx, x #(2n+ 1)% (n € Z) is continuous

; T
x=(2n+l1)= (neZ)
Therefore, secant is continuous except at 2

X g 3 :
——, sinx # 0 is continuous
sin x

= cotx, x #nn (neZ) is continuous

cotx=

Therefore, cotangent is continuous except at x = np, n iz

Question 23:

Find the points of discontinuity of f, where
JS'" Y ifx<0

X
lx +1, ifx=0

f(x)=
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Answer

sin x
, J : ,ifx <0
f(x)=1 x
l.\' +1, ifx=0

The given function f is

It is evident that f is defined at all points of the real line.
Let c be a real humber.
Case I:

/

N

sinc sinxJ sin¢

If ¢ <0, thenf(c)= and lim f(x)= lim{

C des X C

wlim f(x)= 1 (e)

Therefore, f is continuous at all points x, such that x < 0
Case II:

If ¢ >0, thenf(c)=c+1and lim £(x) = ]\nm(\ +1)=c+1
»lim f(x)=1f(c)

Therefore, f is continuous at all points x, such that x > 0
Case III:

Ife=0, thenf(c)=£(0)=0+1=1

The left hand limit of f at x = 0 is,

sinx

lim f(x)=lim =1

x-»() x-»() X

The right hand limit of fat x = 0 is,
lim f(x)=lim(x+1)=1

x>l x—0

sim f(x)=lim f(x)=/(0)

>l x—)

Therefore, f is continuous at x = 0

From the above observations, it can be concluded that f is continuous at all points of

the real line.

Thus, f has no point of discontinuity.
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Determine if f defined by

[0 L .
, J.\"sm~—, ifx=0
§ (\) = X
}_A 0, ifx=0
is a continuous
function? Answer

=Y |-
J.\" sin—, ifx#0
X

f(x)=
XQ ifx=0

The given function f is
It is evident that f is defined at all points of the real line.
Let c be a real number.

Case I:

= 5 1
If ¢ #0, then f(c)=c"sin—
o

I aywme, Uy (SR RS ) Y,
lim f(x) = llm[.\" sin— | = (l|m X’ J[Ilmsm— J =¢” sin—

X—¢ X /{ X \ A—HC X ¢
~im f(x) = f(c)

Therefore, f is continuous at all points x # 0

Case II:

If¢=0, thenf(0)=0
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- TR A R AT
lim f (\) = lim| x° sin— 1 = Ilm(:c“’ sin—
=l = k X J x— b

. "
It is known that, —1<sin—=<1, x#0

X
I
= —X =8in—=X"
X
3 f, 1 5
::-hm[—x‘)ifllm x sin— [ limx”
K=l / = i\ X A Kk =»il

=0=<lim| x° sm—\gﬂ
sl k: X y
- [
= lim| x° 51n—-J=CI
;) \ _r

s lim f(x)=0

Fi

o w 173
x*sin— |=0
x /)

T—sl) y—l Y3l

o i 1 R
Similarly, lim f(x)= I|m_| x*sin— ’: lim
. LY X

2 im f(x) = £(0)= lim f(x)

Therefore, f is continuous at x = 0

From the above observations, it can be concluded that f is continuous at every point

of the real line.

Thus, f is a continuous function.

Examine the continuity of f, where f is defined by

sinx—cosx,ifx=0
-1 ifx=0

f(x)={

Answer

[sin x—cosx,ifx=0

'/("')_I—l ifx=0

The given function fis
It is evident that f is defined at all points of the real line.
Let c be a real number.

Case I:
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If ¢ # 0, thenf(c)=sinc—cose

l‘up f (\) = ]\_i]}j(sin.\' ~cos X ) =sinc¢—cosc

llm/(\) f(e)

Therefore, f is continuous at all points x, such that x # 0
Case II:

If ¢ =0, then /°(0)=-1

lim f(x)= lim (sinx—cosx)=sin0—cos0=0-1=-1
lim f(x)=lim(sinx—cosx)=sin0—cos0=0—1=-1
K30 : x=p

~ lim £ (x) = lim f(x) = f(0)

Therefore, f is continuous at x = 0

From the above observations, it can be concluded that f is continuous at every point

of the real line.

Thus, f is a continuous function.

Find the values of k so that the function f is continuous at the ind
kcosx .. T
. . |t X * ; 2
f(x)= fy=edsk - atx=—
' o T 2
3; ifx=—
2
Answer
kcosx .. m
5 it x 7y
/(\): M—4iX y4
” - n
1), itx= -
The given function f is “
T 1
X =— xX=—
,?ff f is defined at 2

The given function f is continuous at

T
X X =

oA

at 2 equals the limit of f at

icated point.

and if the value of the f
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T /.[ n ) 3
xX=— Jl=[=3
It is evident that f is defined at 2 and 2)
% . kcosx
O

T
Putx=—+nh
)

nt
Then. x — = =>h—0

Tt
P kcos(q +h)
> s cosx . 2
s lim £ (x) =lim = lim- .
s »—:- X L] Il’—z.\‘ >0 ( T \
2 e n-2| —+h
(2
. —sinh k.. sinh k k
=klim——==lim——==.1=—
h—0 _2,1 2 h—0 h 2 2

Therefore, the required value of k is 6.

Find the values of k so that the function f is continuous at the indicated point.

atx=2

S(x)= 13‘

Answer
kxe, ifx<2

X)=
. o /() {3, ifx>2
The given function is

The given function f is continuous at x = 2, if f is defined at x = 2 and if the value of f

2

at x = 2 equals the limit of f at x

2)=k(2) =4k

It is evident that f is defined at x = 2 and /(
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lim f(x)=lim f(x)= £ (2)

= lim (kx* ) = lim (3) = 4k

= kx2'=3=4k

=4k =3=4k
=4k =3

3
= k==

kisi

Therefore, the required value of

Find the values of k so that the function f is continuous at the indicated point.

) Jk1'+l, ifx<m
lcos x,ifx>n

Answer

The given function is

atx=m

Ix+1, ifx<nm

cosx, ifx>m

The given function f is continuous at x = p, if f is defined at x = p and if the value of f

at x = p equals the limit of f at x

It is evident that f is defined at x
lim f(x)=lim f(x)=f(n)

= lim (kx+1)= lim cosx = km+1

XX x—x’

= kn+l=cosnm=kn+l

=Skn+l==1=kn+1

2
>k=——
T

kis ==,

Therefore, the required value of

p and

s

f(m)=kn+1
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Find the values of k so that the function f is continuous at the indicated point.
[k.\' +1, ifx<5

x)= atx =35
£ N
13.\‘—3, ifx>5

Answer
' kx+1, ifx<5
f (-"):]fa —5, ifx>5
The given function f is ¥ =B

The given function f is continuous at x = 5, if f is defined at x = 5 and if the value of f
5

at x = 5 equals the limit of f at x

It is evident that f is defined at x = 5 and J (S) =kx+1=5k+1

lim f(x)=lim f'(x)=1(5)
= lim (kv +1) = lim (3x—5) =5k +1

= 5k+1=15-5=5k+1

= 5k+1=10
=5k =9

9
=k = =

5

9
kis =,

Therefore, the required value of 5

Find the values of a and b such that the function defined by
(5, ifxs2
f(x)=1ax+b,if2<x<10
21, ifx=10

is a continuous function.
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Answer
5, ifxs<?2
f(x)=1ax+b,if2<x<10

2 if x
The given function f is 21, ifx210

It is evident that the given function f is defined at all points of the real
line. If f is a continuous function, then f is continuous at all real numbers.
In particular, f is continuous at x = 2 and x =

10 Since f is continuous at x = 2, we obtain

lim f(x)=lim f(x)=£(2)

= lim (5)= lim (ax+b) =5

=5=2a+b=5

=>2a+b=5 (1)
Since f is continuous at x = 10, we obtain

lim f(x)= _,‘I,i,'.’.‘r f(x)=r(10)

x—=10

= lim (ax+b)= lim (21)=21

e LU e LU

=10a+b=21=21

= 10a+b=21 -(2)

On subtracting equation (1) from equation (2), we
obtain 8a = 16

sa=2

By putting a = 2 in equation (1), we

obtain2 x2+b=5
>4 +b=>5




Class XII Chapter 5 - Continuity and Differentiability Maths

>b=1

Therefore, the values of a and b for which f is a continuous function are 2 and
1 respectively.

Show that the function defined by f (x) = cos (x2) is a continuous
function. Answer

The given function is f (x) = cos (x2)

This function f is defined for every real number and f can be written as the

composition of two functions as,

f=goh,whereg(x)=cosxandh(x)=x2

[ (goh)(x)=g(h(x))=g(x’ )=cos (x* )= /(\)}

It has to be first proved that g (x) = cos x and h (x) = x2 are continuous
functions. It is evident that g is defined for every real number.

Let c be a real number.

Then, g (c) = cos c

Putx=c+h

Ifx—>c, thenh—0

limg (x)= lim cos x

=limcos(c+h)

fi—0

= Iim[cosccos h—sine¢sin h]
)

i)
=limcosccoshi—limsincsinh
i fr—0

=cosccosO—sinesin0

=coscx]—sinex0

Therefore, g (x) = cos x is continuous function.
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h (x) = x>

Clearly, h is defined for every real number.
Let k be a real number, then h (k) = k?
lli'H h(x)= I(il'];l bl B

I|||33 h(x)=h(k)

Therefore, h is a continuous function.

It is known that for real valued functions g and h,such that (g o h) is defined atc, if g

is continuous at c and if f is continuous at g (c), then (f o0 g) is continuous at c.

f(x)=(goh)(x)=cos(x*)

Therefore, is a continuous function.

(x)=|cosx
Show that the function defined by J (\) 1608 "‘ is a continuous

function. Answer

The given function is~/ (x)=|cos .\']

This function f is defined for every real number and f can be written as the

composition of two functions as,

f = g oh, where&(¥) =[xl and h(x)=cosx

[ (goh)(x)= g(h(,\')) =g(cosx)= ‘cosx| = f(\)]

(x)=|x and h(x)=cosx

It has to be first proved that g are continuous functions.

g(x)=|x| can be written as
» J—.\‘. ifx<0
g(x)= l\ ifx=0

Clearly, g is defined for all real numbers.
Let c be a real number.

Case I:
Ifc <0, then g(c)=—c and lim g(x)=1lim(-x)=-c

~limg(x)=g(c)
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Therefore, g is continuous at all points x, such that x < 0
Case II:

Ifc>0, theng(c)=cand limg(x)=limx=c¢

X X-»g

l\lmg(x) =g(c)

Therefore, g is continuous at all points x, such that x > 0
Case III:

Ifc=0, theng(c)=g(0)=0
lim g(x)=lim(-x)=0
x—i) - x—0 &
lim g(x)=lim(x)=0
X3 o I |
s lim g(x) = lim (x)=g(0)
=30 2 & x=30" " 7 J
Therefore, g is continuous at x = 0
From the above three observations, it can be concluded that g is continuous at all
points. h (x) = cos x
It is evident that h (x) = cos x is defined for every real
number. Let c be a real number. Putx =c + h
If x - ¢, thenh —
O0h(c) =cosc
lim(x)=limcos x

=limcos(c+h)
L . )
= lim[cos ¢ cos i —sincsin h|

Je—sl)

=limcosccoshi—limsinesin A
20

=0 13

=cosccos()—sincsin(
=coscx]l—=sinex(

=C0sc

sdimh(x)=h(c)

Therefore, h (x) = cos x is a continuous function.
It is known that for real valued functions g and h,such that (g o h) is defined at c, if g
is continuous at ¢ and if f is continuous at g (c), then (f o g) is continuous at c.
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f(x)=(goh)(x)=g(h(x))=g(cosx)=|cos x|

Therefore, is a continuous function.

sin x|

Examine that is a continuous function.

Answer

Let f(x)=sin|x|

This function f is defined for every real number and f can be written as the
composition of two functions as,

f=goh, where &(¥) =[x| and i (x)=sinx

[ (goh)(x)= g(h(x)) = g(sinx) = |sin.\' = f(\):|

)=|x| and h(x)=sinx

It has to be proved first that g(.\‘ are continuous functions.

g(x)= |\| can be written as
_ [ ifx<0
3 lx, ifx=0

g(x)

Clearly, g is defined for all real numbers.
Let c be a real number.

Case I:

[fe <0, then g(c¢)=~c and lim g (x) = lim (-x)=-c¢

< lim g (x)=2(c)

Therefore, g is continuous at all points x, such that x < 0
Case II:

Ifc¢ >0, then g(c)=c and [1131g(\) =limx=c

~lim g (x) = g (c)

Therefore, g is continuous at all points x, such that x > 0
Case III:

If ¢ =0, then g(c)=g(0)=0
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iy alx)= ()=

fpa(x)=ip(x)=0

L e g l=ed)

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all
points. h (x) = sin x

It is evident that h (x) = sin x is defined for every real
number. Let ¢ be a real number. Put x = ¢ + k
If x - ¢, thenk —

Oh(c) =sinc

h(c)=sinc

lim h(x)= limsin x

— lAlm sin(c+k)

»

=lim [sin ccosk +coscsin k]
A

= lim(sinccosk)+lim(coscsink)
k=0 h—0

=sinccos0+coscsin0

=sinc+0

=sinc¢

2 l\il}:l h(x)=gle)

Therefore, h is a continuous function.
It is known that for real valued functions g and h,such that (g o h) is defined at c, if g
is continuous at c and if f is continuous at g (c), then (f o g) is continuous at c.

Therefore, 1 (x)=(goh)(x) = g(h(.\‘)) =g(sinx)= |sm .\'| is a continuous function.

Find all the points of discontinuity of f defined by J (\) - "\‘|_|'\'+I .

Answer

f(x)=]x|—|[x+1

The given function is
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The two functions, g and h, are defined as
g(x)=|x| and h(x)=|x+1]
Then,f=g—-h

The continuity of g and h is examined first.
e(\) = |\| can be written as

o _J—,\‘, ifx<0
glx)= lx, ifx=0
Clearly, g is defined for all real numbers.
Let c be a real number.

Case I:
Ifc <0, then g(c)=—c and lim g(x)=1lim(-x)=-c
l\.i'P g(x)=g(c)

Therefore, g is continuous at all points x, such that x < 0
Case II:

If¢>0, then g(c)=cand limg(x)=limx=c¢

X-dg

~limg(x)=g(c)

Therefore, g is continuous at all points x, such that x > 0
Case III:

If¢=0, then g(c)=g(0)=0
lim g (x)=lim (-x)=0

x—34 x¥—l)

lim g(x)=lim(x)=0

¥’ 1=

s lim g(x) = lll_z:lil (x)=g(0)

x>l L

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

h(_\') = ]x + l| can be written as

= e

x+1, ifx=—1

Clearly, h is defined for every real number.
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Let c be a real humber.
Case I:

If ¢ < -1, then i(c)=—(c+1) and lim h(x)= lim L—(.r* I)J =—(c+1)
slima(x) = h(c)

Xo»

Therefore, h is continuous at all points x, such that x < —1
Case II:

Ife¢>~1, then h(c)=c+1and limh(x)=lim(x+1)=c+1
s limh(x) = h(c)

Therefore, h is continuous at all points x, such that x > —1
Case III:

If ¢ =~1, then h(c)=h(-1)=-1+1=0

lim h(x)= lim [—{_.x‘+|_)}:—{—l+]'}: 0

x——| x——1

lim A(x) ‘]iln‘(_,\‘-:—l) (-1+1)=0

x—a—|"

oo lim A(x) = lim h(x)=h(-1)
L i S

x—=—1
Therefore, h is continuous at x = —1
From the above three observations, it can be concluded that h is continuous at all
points of the real line.
g and h are continuous functions. Therefore, f = g — h is also a continuous

function. Therefore, f has no point of discontinuity.
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Exercise 5.2

Question 1:
Differentiate the functions with respect to x.

sin(x* +3)

Answer

Letf (x) =sin(x* +5), u(x)=x"+5, and v(¢) =sint
Then, (vou)(x)=v(u(x))=v(x*+5)=tan(x* +5) = f(x)
Thus, f is a composite of two functions.
Putr=u(x)=x"+5

Then, we obtain

) i(sinl) = cost = cos(x” +5)

di

a d dia d

A2 (2 r5)=L(x)+ L (5)=2x+0=2x

dx d\‘(t ) a’x(Y )+dx() X :

Therefore, by chain rule, & G cos.(x1 + S)x 2x = 2xcos (x" - 5)
dx dt dx

Alternate method

%[sin(.\"’+5):|=°°S("'?+5)'%("‘?+5)
, Y, i P
=LOS(.‘(‘ +5 —;(\ ) 2\"(3)}

Question 2:
Differentiate the functions with respect to x.

cos(sinx)
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Answer

Let /'(x) = cos(sinx),u(x)=sinx, and v(r) = coss
Then, (vou)(x)=v(u(x))=v(sinx)=cos(sinx)= f(x)
Thus, f is a composite function of two functions.
Putt = u (x) = sin x

di\-' _ (11’ [cost] =—sinf = —sin(sinx)
ar ¢

di d .

o T(sm,\') =Cosx

ax ax

df dv dt . . o
= ——.— =—sin(sinx)-cosx = —cosxsin(sinx)
By chain rule, dx  di dx

Alternate method

:; [cos(sin Y):l = —sin(sinx)- Z\ (sinx)=-sin (sin X)-€osx = —cosxsin (sin x)

Question 3:

Differentiate the functions with respect to x.

sin(ax+b)

Answer

Let f(x)=sin(ax+b), u(x)=ax+b, and v(1)=sint
Then, (vou)(x)=v(u(x))=v(ax+b)=sin(ax+b)= f(x)
Thus, f is a composite function of two functions, u and v.
Putt=u(x)=ax+b

Therefore,
@=(—i(sint):cost=cos(a.\'+b)

dr dt

da d d d
—=—/(ax+b)=—/(ax)+—(b)=a+0=a
dx dx( ) dx( ) dx( )

Hence, by chain rule, we obtain

df _dv dt

- ‘ = =cos(ax + b)-a =acos(ax+b)
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Alternate method

%[sin(axa—b)] = cos(ax+b).di(ax+b)

X

=cos(ax+h)-|r%(ax)+i(b)}

| dx dx
=cos(ax+b).(a+0)

=a Cos(a,\' +b)

Question 4:

Differentiate the functions with respect to x.
sec(tan(\/;))

Answer
Let f(x)= sec(tan \G).u(.\') = \/;\(f) =tant,and w(s)=secs
Then, (wovou)(x) = w[v(u(x))] = u-'[v(\;";)] = w(tan \/:) = scc(tan \/;) B f(v)

Thus, f is a composite function of three functions, u, v, and w.
Puts=v(r)=tanf and r = u(x) = Jx

Then, aw f (secs)=secstans =sec(tant).tan(tanr) [.s' = tan r]
s oy )

:sec(lzm \:’;]rlan(lan »\,’;) [t = Jq

% = ;—i(tanf) =sec’ 1 =sec’\x

di_d (o d (9 1 L
== XI1= x- |= LS o =

dy gy ( ) dx L 2" 2Jx

Hence, by chain rule, we obtain
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dt  dw ds di
dc ds dt dx

= sec(lan \/;) tan (lan \){_v._t')xsec: Jrx "‘}_
: ! =y X

sec’ Jx mc(tan «E) tan(tan y'{;)

1
T

sec? fx sec(tan vfl_")tan (lan \/;)
- ~r

=

Alternate method

Question 5:

Differentiate the functions with respect to x.
sin(ax+b)

cos(ex+d)

Answer

sin(ax+b) g(x)
cos(ex+d)  h(x)

f(x)=
The given function is
h (x) = cos (cx + d)

o gh-gh
=B

Consider g(x)=sin(ax+b)
Let u(x)=ax +b,v(r) =sint
Then, (wau](x) = V(H [x}) = v(m:+ b) =sin (ax+ b) = g(x)

, where g (x) = sin (ax + b) and
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~ gis a composite function of two functions, uand v.

Put7=u(x)=ax+b

dv d :

D _ 4 (sint) = cost = cos(ax+b
5 dl(qm) cost = cos(ax+b)
di _ d

d d
—=—/ (ax+b)=—(ax)+—(b)=a+0=
dx ci\'(m )) dr(m) ci\’()) i g

Therefore, by chain rule, we obtain
o _dg _dv di

g'= T E=c05(m‘+b)-a=acos(a_\' +b)

Consider h(x) = cos(ex+d)
Let p(x)=cx+d, g(y)=cosy
Then.(gop)(x)=g(p(x))=g(cx+d)=cos(ex+d)=h(x)

~his a composite function of two functions, p and g.

Puty=p(x)=cx+d

Z_“l = (;I“(cos_1-v‘) =—siny =—sin(cx +d)
dv d d d

o s ’ l — X 1 =
dx dr(”+( ) d.\‘(“)+dx(( ) ‘

Therefore, by chain rule, we obtain

i = dh _dq dy

= Z Ez —sin(ex+d)xc=—-¢sin(ex+d)
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,acos(ax+b)-cos(ex +d)—sin(ax+b){-csin(cx+d)}
) [cos(c.\'+d):|2

sin(cx+d) |

cos(ex+d) cos(ex+d)

_acos(ax+b)
~ cos(ex+d)

+csin(ax+b)-

=acos(ax+b)sec(ex+d)+esin(ax+b)tan(ex+d)sec(cx+d)

Question 6:

Differentiate the functions with respect to x.
cos.\".sinz(xi)

Answer

32
The given function Bl (.r )

:ij: [cos x*-sin’ (x'* )} =sin’ (x" ) X %(cos % ) +C0S X X %[sinz (.r’ )]

=sin’ (.\" )x (— sinx’ ) X ;—1\: (\) +cosx’ x2sin (x’ ) :i{r I:sin .\'51

. 3 .2 5 ~_2 . s 3 5 S
=—sinx’ sin (_x- )x.n- +28inx’ cosXx” -Ccos X x—(x )
] 5
2 .2 3 = 2 5 : 5 ) 3 4
=—3x"sinx’ -sin (x )+25mx cosx’ cosx’ -x5x

=10x"* sin x’ cosx” cos x* — 3x* sin x” sin’ (.\")

Question 7:

Differentiate the functions with respect to x.

2 ’COI (.\‘3 )

Answer
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"~ Jeos x* vfsin #* sin x*

N 22

B \fm::inf
242 x

. 2 | . 3
sinx”+/sin2x”

Question 8:

Differentiate the functions with respect to x.

cos(\/.x—')

Answer

Let f(x)= cos(\/;)

Also, let u(x)=+/x

And,v(r) = cost

Then, (vou)(x)=v(u(x))
()
= cosv/x
=f(x)

Clearly, f is a composite function of two functions, u and v, such that

t=u(x)=+x
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Then,ﬂ = i( 1) = itté \" = ]—x_;
dx  de' del ] 2
1
NS
And, o _d. (cost)=—sint
df dt’ ’
= —sin ( \,”.;)
By using chain rule, we obtain
dt dv dt
dx - dt dx

=—sin(\/;)-

o
P

=———]—sin( .\')

o
2Jx

Alternate method

i[COS(‘E)} ) "Si”(‘/;)'i(‘/;)

Q,

dx dx
d{ |
=—sin(\/;)x— x?
(l\'\
i
=—sin\/;x —x 2
2
_ —sinyx
- 2x
Question 9:

Prove that the function f given by

/(%) =|x—l|. xE Ris notdifferentiable at x = 1.

Answer

The given function isf('r) =]x-1|, xeR
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It is known that a function f is differentiable at a point x = c in its domain if both
“(e+h)-T(c fle+h)-f(e

Iim‘/( ) ‘/()und lim_'( ) f()

ks h =t h are finite and

equal. To check the differentiability of the given function at x =

1, consider the left hand limit of fatx = 1

f+m)=7 () _ 1+ h=1]-[1-1|

lim
f-l) h Jeall h
b -0 = .
— tim A= = iy = (h<0=|H=—h)
il h htr fa ) '
=-1

Consider the right hand limit of fat x =1
"(1+h)- (1 +h-1-|1-
fim S+ 1) _,f(l) = fim \l h l} \II |

=il 1 h—0 h
h

= lim |h . = lim = (Ik == |)’1‘ = ﬁ)
- h fi—" h k Z

=1

Since the left and right hand limits of f at x = 1 are not equal, f is not differentiable at x

=1

(x)=|x],0<x<3.
Prove that the greatest integer function defined by I ‘) [\] SES is

not differentiable at x = 1 and x = 2.

Answer

The given function f is” (x)=[x].0<x<3

It is known that a function f is differentiable at a point x = c in its domain if both
o fle+h)-1(e o fle+h)-f(c
llm‘f( ) '/()und llm'( )-7(¢)
B h he=t h are finite and equal.
To check the differentiability of the given function at x = 1, consider the left hand limit
offatx=1
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714 ;) [1|h] [1]

lim

=ik k—t-lll
O—I -1

=lim—=lim—=w

I I S
Consider the right hand limit of f at x =1
(1+ k)= 11 1+h]-[l
i ZUH=T0)_ g 1441

h—stt* h B’

= B = = i D=1
=0t R h—0

Since the left and right hand limits of f at x = 1 are not equal, f is not differentiable
atx =1

To check the differentiability of the given function at x = 2, consider the left hand
limitof fat x = 2

i S (270 f(2) _ \["”’] 2]
fa—»i) h w—t"l

Lo 1=2 0 -l
=lim—=lim—=m

Jr—sll h fa—wll h
Consider the right hand limit of f at x =1

f(2+h)-1(2) [3+’7] 2]

lim
h—ll h n': ~-pf.| ¥
2=2
= lim =lim0=0
T ] h—al

Since the left and right hand limits of f at x = 2 are not equal, f is not differentiable at x
=2
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.
Find dx :
2x+3y=sinx
Answer

The given relationship is 2x+3y=sinx

Differentiating this relationship with respect to x, we obtain

d d i R
—(2x+3y)=—/(sinx
dx( ’ ) rlx‘( )
5 4 (2x)+ 4 (3y)=cosx

dx dx
=2 +3£{‘¥‘ =COSX

dx
‘)i =cosx—2
dx

_dv  cosx-2

dx 3

g
Find dx
2x+3y=siny
Answer

. . . n 7 b ) = 1 ;
The given relationship is 2x+3y=sin)

Differentiating this relationship with respect to x, we obtain
d ., d -,)‘r) d

—(2x)+—(3y)=—(siny)
dx dx dx
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dy dy : 5
= 2+3—=—=cos y—= [By using chain rule]
dx dx
dy
=2=(cosy-3)—
dx

.\
=
()

T dx cosy-3

Question 3:

Find dx :

ax +by: =Cosy

Answer

The given relationship is @ +£y" =cos y

Differentiating this relationship with respect to x, we obtain

;t (a_r)+ %(by:) = i‘;(cos_}--‘)
d oy d .
b= (y*)==(cosy (1
= a+ - {'} ] c’i.r('b%}} (1)
L [1:) = .'2'_1-‘ﬁ i(‘cns;\r) = —sin Ld—‘ wil @)
Using chain rule, we obtain dx drand dx X

From (1) and (2), we obtain

dy . dy
a+bx2y—=-siny—
dx dx
o " ‘i“
= (2by +siny)——=-a
; dx
cdy ~-a

dx  2by+siny

Question 4:
dy
Find dx :

xy+y’ =tanx+y
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Answer

The given relationship is ™' )" =tanx+y

Differentiating this relationship with respect to x, we obtain

d 5 d
—(xv+ 1 )=—(tan )
(\_1+__1 ) dx(anr+})

dx
d ds d dy
= xy)+ y* )=—(tanx)+—
cl\'( . ) dx ( ) dr( ) dx
d dy dy , dy : ¢
=| y—(x)+x.—=— |+2y—=sec’ x+— [Usmg product rule and chain rule]
dx dx dx dx
dy dy 2 dy
=y l+x.—+2y—=sec' x+—
dx " dx dx

=(x+2y-1)—=sec’x-y

dx
_dy  sec’x-y
Ty (x+2y-1)

Question 5:
dy
Find dx :
X +xv+y' =100
Answer

The given relationship sttty = 100

Differentiating this relationship with respect to x, we obtain

L3 (.\': +xy+y° ) = d‘ (100)

dx dx

d; sy d d [ s
— —(_\" ) +—(xp)+ —(y' =0
dx dx [Derivative of constant function is 0]
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= 2x+ [\ a (x)+x- d‘] +2y Y _o [Using product rule and chain rule]
dx dx dx

=2x+y-l +x-‘§v +2y({}{ =0

dx dx
= 2x+y+(x+ 2)’)@ =0

dx
Ldy _ 2x+y
Tdx x+2y
Question 6:
@

Find ¥ :

X +xX’y+xt+y =81
Answer

. . Ly 2. . b= 81
The given relationship is* * ¥ V+X +y =

Differentiating this relationship with respect to x, we obtain

d 3 2 b 3 d
Ly (- T . SO ) WL S
(\ + XY+ 1 +_1) dr( )

dx
d (2 d 5 d s
= E(.{‘)+ ;’—\(\ ,v)+ I(u )+ I(‘ )= 0
w3 L (e Dl L o) x L ) e L
=5 3%’ +[.\--‘-2x+x3 @:i|+|iv-' -I+.\‘-2_v.£-1!i|+3v2 dy -0
' de | | de| 7 dx

= (x: +2xy+3y° ) ? + (3.\'2 +2xy+ )’ ) =0
dx

dy ~(3x% +2xy+)?)

dx (x3 +2xy+3y° )

Question 7:
@
Find dx :

sin y+cosxy=m
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Answer

The given relationship is SN~V +Cosxy =17

Differentiating this relationship with respect to x, we obtain

;jvc(Sin3 y+cosxy)= ;Ix (%)

= (sin’ y)+ :ilx (cosxy)=0

Using chain rule, we obtain

d (. T . dy
— (sm' y) =2sin y—(sin y) = 2sin ycos y—
dx dx dx

d _d . d &
E(COS Xy) = —sin xy E(n) =—sin .\,\-{r E(.\’)-*—,\ E}

.| dy y ; dy
= —sinxy| y.l+x— |=-ysinxy - xsinxy—
[ dx dx

From (1), (2), and (3), we obtain

! dy : : dy
2sin ycos y——— ysinxy - xsin xy— =0
dx dx

. . dy .
= (2sin ycos y - xsinxy)—= ysinxy
dx
; g y :
= (sin2y - xsinxy) & =Sy
dx

Ldy ysinxy

dx sin2y—xsinxy

Question 8:
Find dx :

sin” x+cos’ y=1
Answer

The given relationship is sin” x+cos” y =1

(1)

Differentiating this relationship with respect to x, we obtain
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. 3 d
—(sm‘ x+cos’ y)=

L
dx dx( )
d

w 2 ) d 2
= E(sm‘ :c] + a(cos‘ '1--‘] =0

— 2sinx-

(sinx)+2cos y-—(cosy)=0
= 2sinxcosx +2cos y(-siny)- T‘ =0
dx

= sin2x—sin2y— =0
dx

_dy  sin2x

dx sin2y

Question 9:
dy
Find dx :

e
y=sin -
1+x°

Answer

3

y=sin '( J
The given relationship is I+x

A 2%
y=sin -
|+ x~

: 2x
=siny= .
+x°

Differentiating this relationship with respect to x, we obtain

o (siny) = 22

dx de\ 1+ x°
; 17 2x "
DCOSPQ:iL \F) (1)
Ty ode\1+x ‘
2x u

The function, 1 +" | is of the form of ¥

Therefore, by quotient rule, we obtain
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ivod J 1
d( 2x ) (I+“")':Z»(2~V)—2x‘i(l+x‘)

) (I +x° )

) (1+7).2-2x-[0+24] 2427 —4x 2(1-2%)

(1 +x2)' (l +.x"’)3 (l +x? ):

E 1+ x°

: 2x
sy =
Also, +X
. 2 2x ¢
= cosy =+fl-sin" y = [1- —| =
1+ x°

:\/(““2)- _1=2 -(3)

(l+x:)2 C1+x?
From (1), (2), and (3), we obtain
l_—vxﬂ: 2(1—1‘3)
1+x° dx (1+_‘.1 )‘
& 2

dx - 1+ x?

Question 10:
dy
Find dx :

,(3.\'—.\'"} 1 1
y=tan | 5 <X<—

Answer

3x=x>
1-3x°

y= tan'[
The given relationship is -
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1 v 3.\‘ . .\‘}
y=1tlan =
1-3x"

3x-x°

=tany = ‘ (1)
1-3x° :
S 3 Y
3tan- —tan’ -
tan y = 2 ' =(2)
1-3tan® 2
3

It is known that,
Comparing equations (1) and (2), we obtain

"‘
x =tan =

Differentiating this relationship with respect to x, we obtain

4 (x)= i‘ taniJ

(i\' (1‘\ \ 3
vy dy)
:>l=sec":-——t'7
3 de\3)
»y 1 dy
=]=sec” = —.—
3 3 dx
d 3 3
2y 2 vV
e sec”— l+tan” -
3 3
Ldy 3
Tdx 14X
Question 11:
dy
Find dx
I=x*
y =cos ' _[,0<x<1
14 x°
X
Answer

The given relationship is,
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—x*
= cosy= -
14 x°
2 ¥
l—tan” - 2
7 1-x
= = :] -
5 +x°
|+ tan” f;) *

On comparing L.H.S. and R.H.S. of the above relationship, we obtain

y
tan=—=x
2

-

Differentiating this relationship with respect to x, we obtain

>y dy d
sec” 2 [ 7J: (\)

dx\ 2 dx
>y ldy
=>sec  —x———=|
2 2dx
dv 2
de 2V
sec
2
dy 2
A 2 Y
dx [ tan?d
2
. dy I
dx  1+x°
dy
Find X :
y=sin"' = . 0<% <l
1+ x°
Answer

3

. | [ I TH .\‘: ]
y=sm v
The given relationship is i
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. qf1-%° 1
y=sin -
1+x”,

)

l—x~

=s8in y = -
L4+x*

Differentiating this relationship with respect to x, we obtain

I

dx _E 1+x

Using chain rule, we obtain

d (sin y) =cosy- i
et ok

(l+r2)3_(1_x:)3

B B _ x
- ('sz]f B Cl4x
) _ 2x d_l -
E(Sm})_ 1+x% dx (2)
i[:;:]: (I“L"';)'(l_‘r(;) _gl):_'r)l(] +r) [Using quotient rule]
el 14 1+ x°

_ (-1+ pee )(_2.1{)—(1_‘,(:')_(22{]
(1+7)
_2x-2x" 2342’
(1+27)
—4x |
2 y -(3)
(,1+-"')

From (1), (2), and (3), we obtain
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2x dy  —4x

n

1+x* dx (1+x°)

dy =2

dr 1+

Alternate method

. | ( ] e .1"

" —-—crn =

. l=x""
smy=- =~
= 1+ x°

=5 (I + _r:’)sin y=1-x
= (1+siny)x* =1-siny

, l=siny

=X =—
l+sin ¥
g }J . }_c -
COS —8In
2\ 2 2
=x == =
f .l'". . }n “'I
‘ COs = +sin J
3 )
LY = =
A,
COS8~— —8in
2 ¥
== x= £ =
} . "‘
COS—45In -
2 2
Vv
l-tan-
3
= =
v
|+ tan -
2
n » \I
= X= Ianf e
V4 2

Differentiating this relationship with respect to x, we obtain
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d d ‘T y)
_(1')2_. lan e i
dx dx 4 2
z[ﬁ )-"J d[:n: _}!]
=l=sec’| ——= |-—| ——=
4 2) deld 2
::»1=|Vl+tanz[£—iﬂ-(—l i]
4 2 2 dx

:1:(11+.1-3)[_% j‘]

»
dy =2
dc 1+x°
Question 13:
&
Find dv :
y = cOS '( 2'\‘1J.—l<x<l
’ d+x°
Answer

3
¥ =cos '[ = :J
The given relationship is I+x

o 2x
V= COS -
d+x°

2x

= Cos )= -
1+ x°

Differentiating this relationship with respect to x, we obtain

i(cosv)“i-( 2 J
dx ’ de \1+x°

(14x7): j{ (2x)-2x- < (14x7)
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dy (I—.\'E]
l+x° dx (] +.1::)2

ﬂ_ -2
& 1+x°

Question 14:
@
Find dx :

y=sin"' (ZVH) - L,—
Answer

_ ~ y=sin '(2.&/1—7)
lationship is .
y=sin"' (Zn/r)
=siny= 2\H

Differentiating this relationship with respect to x, we obtain
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. 1@_ -i . 2 ﬁr".
COs i -2[.1 i, (‘J[ ) \/I i

Question 15:
dy
Find I :
y=sec '(‘#J,O<x<L
2x -1 J2
Answer

|
v =sec (7 : ]
The given relationship is 2x° -1

v =sec '[ I J
2x° -1
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= cosy=2x"—1

= 2x* =1+cos y

Differentiating this relationship with respect to x, we obtain

d d y
—(x)=—/] cos=
dx dx 2

.y dfy
= l=-sin=-
2 dx\2
-1 1 dy
D — :; 7'
.y
sin © -k
2
dy -2 -2
— ‘1: = =
X Y 2 ¥
L I-cos
2y 2
dy -2
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Differentiate the following w.r.t. x:

e

sin x
Answer
C’.'-
i
Let SInx

By using the quotient rule, we obtain

dy sin x :li(e’")—e‘ :{i(sin,\')

. >
dx sin” x

sin x.(e‘ ) —e"-(cosx)

sin” x

i
e (sinx—cosx
= ( — ),.\';tmt,neZ
sin” x

Differentiate the following w.r.t. x:

s x

()
Answer

sin'x

LetV =€

By using the chain rule, we obtain
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','M" x

dx  dx\
o

- d ;-{x‘(mn x)

Y _ 4 (s
— fin Ry

e

V1-x%

!
Lam X
€ .

o5in %

Show that the function given by f(x) = e2X is strictly increasing on

R. Answer

Let™ and X ho any two numbers in R.

Then, we have:

X ex = 2x<2n et et = f () < £ (x;)

Hence, f is strictly increasing on R.

Differentiate the following w.r.t. x:

c).'\ :

Answer

Let Y =€

By using the chain rule, we obtain

(1“ ‘{ i .l':‘ X ‘{ 3 Y a2 a2 X
—=—\e )=e —(x )=e 3x" =3x"e
dx dx / dx "

Differentiate the following w.r.t. x:

sin(tan e )
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Answer

LtV =Sin (tan'e )

By using the chain rule, we obtain

D AT n (™ e)]

dx dx

:cos(tan le ")-—g—(tan ‘e ‘)
e\

:cos(tan 'e ‘);,: (e ')
e

Vcos(tan"e"‘) ol
e cos(lan‘l e )

- = — (1)

1+e™*

S cos(tan 2 e'")

1+ efl.x

Question 5:

Differentiate the following w.r.t. x:

log(cos e )

Answer

Let y= Iog(cos e' )

By using the chain rule, we obtain

& d 5

;: = i[log(cos ¢ )]
i d ,

- cose” -;——r(cuse‘ )

1 Co. oy d g
= ‘_-(—sme")v {e")
cose” Sy A
—sing”
= = @

cose’

=—e"tane",e" #(2n+ I')

2 A

.neN

L}
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Question 6:

Differentiate the following w.r.t. x:
e +e +..tet

Answer

(/ X ): ,x"
—(P' +e +..+e )
dx

L od iy, dpax. dp.on. d.5
() ) (e

=e"+ [ef’ x ;—i(.\-l )J " [( ;_’\(x )] + [( .%(.\» )} + [(,x‘ .%(_\.s )}

=e" +(e": x2.r)+(e"1 x3,t1)+(e"‘ ><4.\'3)+(e" ><5x4)

=e" +2xe" +3x%e" +4x'e" +5x'e"

Question 7:

Differentiate the following w.r.t. x:
e x>0

Answer

LetY = ‘/7

-

Then, Y =€

'

By differentiating this relationship with respect to x, we obtain
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= 2)».@1 = i(\f;) [By applying the chain rule]

Question 8:

Differentiate the following w.r.t. x:
log(logx).x >1

Answer

Let? = log(log x)

By using the chain rule, we obtain

dy _d
—=—/log(log x
dx dxl: g(log ):I
b l ‘i(log"‘)
logx dx
o
logx x
o
.\'log.\‘ x> 1
Question 9:

Differentiate the following w.r.t. x:

COs X

>0
log x
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Answer
_ Cosx

V=
Let logx

By using the quotient rule, we obtain

& (Z_(cosx)xlogx—cosxx:;(Iogx)
dx (logx)?
—sin x log x —cos x x lr
) (logx)’ ’
—|xlog x.sin x +cos x
- [ i(logx)" ],x>0
Question 10:

Differentiate the following w.r.t. x:
coslog x+e'),x>0
Answer

v=cos(log.\‘+e‘)
Let”

By using the chain rule, we obtain

:% = —sin(log.\-+e")-;%(|og'\. + e")

= ~sin(logx+e')‘{di(logx)Jri(e")

e dx |

= —sin(logx+e‘)~(l+e.\. ]
X

= _rl+e"’)!sin(log.\'+e"')_.x >0
x
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Exercise 5.5

Question 1:

Differentiate the function with respect to x.
COS X.COS 2x.C0s 3x

Answer

Let y = cos x.cos 2x.cos 3x

Taking logarithm on both the sides, we obtain
log y = log(cos x.cos 2x.¢os 3x)

= log y = log(cosx) + log(cos 2x) + log (cos 3x)

Differentiating both sides with respect to x, we obtain

1 dv 1 d 1 d 1 d 5
———=———(cosx)+———(cos2x)+ ——— —(cos3x)
yvdc cosx dx cos2x dx cos3x dx
dv sinx sin2x d sin3x d
=Dy S _SIIY 4 5y SNO% 4 3
dx cosx ¢os2x dx cos3x dx
. d_)" o) b “
S = —COSX.COS8 2Xx.C08 3x [tan x+2tan2x +3tan _s.\']
dx
Question 2:

Differentiate the function with respect to x.

\/ (x-1)(x-2)
(x=3)(x—4)(x-5)

Answer

oty= | -1(x-2)
Let ) \/(.\'—3)(‘\-_4)(.‘__5)

Taking logarithm on both the sides, we obtain
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yion |_E-DG=2)
o g\}(x—a)(x—d)(x—s)

(x-1)(x-2) ]

logy= : 1
— Rk (x=3)(x—4)(x-5)
=logy= ][Iog{( ~1)(x-2 )}—Iog{(x—?))(x—4)(.\'—5)}]

=logy= %[Iog(.\' —1)+log(x—2)-log(x—3)—log(x—4)- log(x—S)}

Differentiating both sides with respect to x, we obtain

I 1 d
Ldy 1| _IE( x=1)+ 2)-—.—(x-3)

i x—=3 dx
ydax 2|
X— 4 dr( ) x—35 d\'(\ )

dy vy 1 1 1 1 1 J
_— = + X - — e S
dx Z(x——l x=2 x-3 x-4 x-5

Ldy 1 (x-1)(x-2) [ 1 . N - R ]
Tdx 2\ (x=-3)(x-#)(x-5)Lx-1" x-2 x-3 x-4 x-5

Question 3:

Differentiate the function with respect to x.

(logx)™
Answer

Lety =(logx)™"

Taking logarithm on both the sides, we obtain

log y = cos.x-log(log x)

Differentiating both sides with respect to x, we obtain
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%g.‘\.’ - %(cos x)x log (log x) +cos x %[Iog(log ‘)]
= %Z—: = —sin xlog(log x) +cos xx T ’%(Iog"')
dv : cosx |
= == y| =sinxlog(log x) + ——x-
dx logx x

P % - (Iog .‘.)L’\l:.l |: Cl()S X o Sin x IOg(lOg .‘-)}

xlog x

Question 4:
Differentiate the function with respect to x.
X 2.\ir| x
Answer
Lety = x* —2%*
Also, let x* =y and 2" =y
Sy=uU—=v
_dv _du dv
dx dx dx
u=x"
Taking logarithm on both the sides, we obtain
logu = xlog x
Differentiating both sides with respect to x, we obtain

1du_ {i(,\-)x log x + x x —d—('og ")}

wde |dx dx

du 1
=u|Ixlogx+xx

dx x
. x* (logx+1)
dx
du z

= —=x"(1+logx)
dx

V = 2sinx

Taking logarithm on both the sides with respect to x, we obtain
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logv=sinx-log2

Differentiating both sides with respect to x, we obtain

—— log?‘ —(sinx
v d.t ( }
dv
:>—=vlog2cosx
dx
a"’" sinx
=2""cosxlog2
dx
fh"‘ x 7 sanx
so=—=x"(1+logx)-2"" cosxlog2
dx '
Question 5:

Differentiate the function with respect to x.
(x+3) .(x+4) .(x+5)’

Answer

Lety=(x+3) .(x+4) .(x+5)’

Taking logarithm on both the sides, we obtain
log y= log(x+3)? 0 log(:H-s‘l)3 +log(x+ 5)J

= logy =2log(x+3)+3log(x+4)+4log(x+5)

Differentiating both sides with respect to x, we obtain
1 dy 1 d

1

——=2-———(x+3 +4)+4-———(x+5
vy dx x+3 d\'(‘r ety ) x+35 d\(‘ )

dy 2 3 A
o> —=—=y|- + +

de | x+3 x+4 x+45

) R , o) 2 /

Dd) =(_r+3)'(x+4)3(.\'+5)4- IR, B 2

dx x+3 x+4 x+5
:>£=(x+3):(.\‘+4)3(.\'+5)4~ 2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)

de : ! (x+3)(x+4)(x+5)

= D = (x43)(xr+4) (x+5) [2(x #9x420) +3(x* +8x+15) + 4(x* + 7x+12) |

o= (x43)(x+4)" (x+5) (9% +70x+133)
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Differentiate the function with respect to x.

Y .
.r+—J +x "
v'e5

Answer

(LAY, )
Lety = | Xt— | +x- ¥
\ -

x)

p \F [
Also, letu=|x+—| andv=1x"
\, X A

Ly=u+v
dv  du
e =

dv
+ —
de  de dx

b o

. ]
Then, u = (.\: +—
N ,]t‘ &
' ] b
X+ —
W X

= logu = log

g

s 1
= logu = ;rlog‘ X+—

Differentiating both sides with respect to x, we obtain
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l.f’ﬁ:i(_t)xlog(x+l]+xx£ Iﬂg[.x+l]
u dv dv - X dx x

1 du 1 ] d |

= ——=Ixlog| x+— |[+xx - —| X+—
u cx X [ l] el X

X+ — : ’

x

I I
du v 1 [x_;J
—=|x+—| | log| x+— |+ -
dx x X ( l]
x+—
L “ 'r-
du ) [ J xt -1
—=|x+—| |log| x+— [+—
dx x| x) x +1
NES |
L a +Iog[x+—] wl2)
de V0 ox) [x+1 A ‘
[141]
yv=x" v

(1)
= logv=log|x* *

= logb‘=(| +l]log.r
\ X

Differentiating both sides with respect to x, we obtain
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ldv |df, 1 1) d
—_—= l+—||xlogx+|1+— [-—logx
v odx | dx x . x) dx

ldv (1 _ 1)1
=>——2=|—— (logx+|1+— |-—
vede |\ x ) X

ldv  logx 1 1
— L : +—+—‘
v dx x ¥ x
dv [—log.:r+.r+l}
= — =y
dx x
TV '-]1'1."\ —_— Fx
- dh =x"- ) [x+1 71051] -(3)
dx X :

Therefore, from (1), (2), and (3), we obtain

dy ( l]" x* -1 [ 1) {""\(.x-+l—log.\'J
—— =| xX+— —+log .\'+—} +x —_——
dx x/) | x +1 X ) x°

Question 7:

Differentiate the function with respect to x.

(logx)" +x"**

Answer
Lety= ( log _1*)" £ s
Also, let u = (logx)" and v=x"*"
SLy=su+v

dv _du dv

e e
de dx  dx

u = (log x)X

(1)

= logu = Iog[:(log.\')":l
= logu = xlog(log x)

Differentiating both sides with respect to x, we obtain




Class XII Chapter 5 - Continuity and Differentiability

Maths

| du o ; e
= x)xlog(logx)+x- log(log x
(r)x ug( 0g r) X (i\c[ ug(} 0g 1)}

udx  dx
= Z—I: =u lxlng(logx]+.x- 10;,1* . %(l()g.r)}
du il x 1
= —=(logx) | log(logx)+ —
dx (logx) | & (logx) log x x}
du X [ - |
=—-=(I log (log x)+
dx (logx) -og(ogt) h‘)g.\l
s du _ flos 2} _Iug{lng x): logx+1}
dx | logx
du wx .
— =(log 1+ log x.log(log 2
e (log x) [ og x.log( o‘gx)] (2)
p=x"Er

= logv= Iogl(xh\g ,r'}

= logv=log xlogx =(log x)

Differentiating both sides with respect to x, we obtain

v dx dx
l .dV = 2(|og_\'). ‘ (log\)
v dx R
dv
= —=2v(logx) - —
dx (logx)
=> ﬂ — 2x|“§»" w
dx x
dv _—
:>_=2xuur '10 - Tee 3
4 B (3)

Therefore, from (1), (2), and (3), we obtain

7))

e (logx)™" [l +log x.log (log r):] + 2% . log x
dx

Question 8:

Differentiate the function with respect to x.
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(sinx)" +sin” Jx
Answer
Let y = (sinx)" +sin”' Jx

Also, let w = (ﬂ;]n x)x and v = Sil'l_l V‘f;

LYSU+Y

S _du b (1)
v dx dx

u = (sin x}"

= logu = log(sin x)’
= logu = xlog (sin x)
Difterentiating both sides with respect to x, we obtain

ldu d, v . .. v d B o
——=—(x)xlog(sinx)+x x;[log(sm l)]

uds dx
du 1 d

= —=yu| l-log(sinx)+x- v 510 X
dx [ g( ) sinx a{t( }}

du . s - X
i (sinx) [log(sm .x}+—sin , cost

:b% = (sinx)" (xcot x +logsin x) ki)
ax '

v=sin"x

Differentiating both sides with respect to x, we obtain

e R PN\ 8
dx l—(\/;)l dx( )

v 1 1
dx J1-x 2\/3\_'
dv 1

= e = — w3
de  2\Jx-x’ G)

Therefore, from (1), (2), and (3), we obtain

511 =(sin x)" (xcot x + log sin \) +

dx 2Jx-x*
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Question 9:

Differentiate the function with respect to x.

\ln ¢ O3 X

+(sinx)

Answer

w DT

+(sinx)

sinx

Lety=x

CORX

Also, let v =x™" and v =(sin r)

y=u+v

:’ﬂ _du du d\ (])
v dx d‘c

U= A_:iin.l

=] logu—log( ‘"”)
= logu =sinxlogx
Differentiating both sides with respect to x, we obtain

1 du d
S50 _ 0 i Y ot x st i)
g (sm x)-log x +sinx- o (logx)

du [ y ﬂ}
::sd— =u| cosxlogx+sinx-—

X X
du oy sin x :
—=x""| cosxlogx+ -(2)
dx i x | ‘

v=_sinx)""
= logv =log(sinx)™"
= logv = cos x log(sin x)

Differentiating both sides with respect to x, we obtain
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‘l% = %(cosx)x log (sin x)+cos x x %[Iog(sin r)]
= Z: = v[—sin x.log(sinx)+cosx- e ;i (sin \’)]

dv . pe . 4 cos X
= —= (smx) —sin xlogsinx+ coS X

x sinx
d‘! - o8 Y . .
= —=(sinx)"" [~sin xlogsin x +cot xcos x|
X

- ;ﬂ =(sinx)™" [cot xcos x—sin xlogsin x]
X

From (1), (2), and (3), we obtain

dy : sin x . \cosx 3 :
e x*"*| cosxlogx+-——— |+(sinx)™" [cos.xcotx —sin xlogsin x]
dx x

Question 10:
Differentiate the function with respect to x.
XCOSx :‘-2 + ]
X et 2
x =1
Answer
aCod IE +1
Let y=x"""+—
x -1
KO8N "-3 +]
Also, let w=x™"" and v= :
x’ f—

Ly=u+v
dv du dv
- =
de  dr dx
= x.c (RACRS
= logu = Iog(x“‘“” )
= logu =xcosxlogx

Differentiating both sides with respect to x, we obtain
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ldu_d (x)-cosx-logx+x- g (cosx)-logx+xcosx- £ (logx)
ude dr o " A T dx _
du | - ]
= —=u|1-cosx-logx+x+(-sinx)logx+xcosx-—
dx ¥
; da voosy 7
= i =x""" (cos xlog x— xsinxlog x + cos x)
:;,@:x“‘“"[msx(l+I0gx)—xsinxlogx] -(2)
dx |
x* +1
vV=—7
x -1

= logv= Ing‘[x: + l) ~ Iog(x: - I)

Differentiating both sides with respect to x, we obtain

1 d\' o 2x 2x

vdy x2+1 x*-1

:ﬁ = 2.\'(.\'3 —I).—2x(x: + I)
dx (,\'?+l)(.\:"' —l)

:>£="‘2+]x ~4x
/R (_x'l +l)(.\‘2 —l)

.. - -(3)
dx (,\'3 —l)

From (1), (2), and (3), we obtain

L. A [cos x(1+logx)-xsinxlog x] - L

dx (,\': - l)

Question 11:

Differentiate the function with respect to x.

1
(xcosx)" +(xsinx):
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Answer
o |
Lety= (_r cos x}l + (_x sin x)-t
I
Also. let u = [xcosx)" and v = (xsinx)s
Ly=utv
Y _du b (1)
de  dv dx
u=(xcosx)"
= logu = log(xcos x)’
= logu = xlog(xcosx)
= logu = x[log x + log cos x|

= logu=xlogx+xlogcosx

Differentiating both sides with respect to x, we obtain
ldu_d
udx dx
du d d 1 d d
=>—=u|slogx-—(x)+x-—(logx)r+<logcosx-—(x)+x-—(logcos x
] {loex () -tz +{logcosi 4 (s)x- & (ogcoss)|

d
(xlogx)+ E(xlogcos.r)

D@—(tcosx)x (logx-l+x-l]+{logcosvl+r- : .i(cosx)}
. X T 7 cosx dx

du

4, (s’ [(logx+|)+{Iogc"s“"*%'(_g"“’)ﬂ

= % = (xcos x)“’ [(I +log x)+ (10gcos x—xtan \)]

= j\: =(xcosx)’ [' —xtanx+(logx+ Iogcosx):l

:‘:: =(xcosx)'[1-xtan x+log(xcosx) ] -(2)
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|
y= ( xsinx)s
N

= logv = log(xsin x )«

= logv= lIo»g(x sin x)
X

= logv = l(log.r +logsin x)
. .
1 ] .

= logv =—log x+—logsin x
% x

Differentiating both sides with respect to x, we obtain

]‘1"—‘”'|ow]+‘1 ! 1og(sinx)
vde dxlx & dx| x S

X X dx

ldv [ d{1). 1 d .y d(1Y. 1 d .
D;I—_log.\“—(—}——-z(lob.\)]+|:log(sm‘x)vz(;)+—-7{lob(sm.1)}}

dx

:>1£——lo r-(— : ]+ll +| log (sin t)-[—i)+l~L-i(sin ¥)
vdx | & X)) x x gl X2 ) x sinx dx'

’ log (sinx
:1&:%(l—logx)+[— og,(s:n\)+ ] ~c05x]
vdx x° -

X

X xsinx

] 1 B -4 o "I » b R 5
dv _ il I l(zg.\ 3 og (sin x’)+ x cot x}
dx ¥ 7
’ | B oy X — . | ¥
0 e L)t
dx i "
, | ’l—log(xsinx)+xcotx )
:> — =|. J X B
2 (xsinx) = :I 6)

=

From (1), (2), and (3), we obtain

dy x .| xcotx+1—log(xsinx)
— = 1—xt I 2 »: 3
= (xcosx)"[1-xtan x+log(xcosx) |+(xsinx) [ 2
Question 12:
dy

Find dx of function.
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Answer

S 4 o —
The given function is® 7 =1

Letx =uandy  =v
Then, the function becomesu + v =1

L (1)
dy  dx '
H=x

= logu =log(x")
= logu = ylogx

Differentiating both sides with respect to x, we obtain

1 du dy d
——=logx—+y-—(logx)
u dx dy dx
~du [ dy 1 }
= —=u|logx—+y-—
dx dx X
du i dv vy ] »
= —=x"|logx—+= ik 2
dx [ e dx x ( )
V= _1" E

= logv=log (1 ’ )
= logv=xlogy

Differentiating both sides with respect to x, we obtain

1 dv d d
——=logy-—(x)+x-—(logy
v dx = af\‘( ) d\‘( ey)
dv ( 1 d\']
= —=v|logy-1+x— —
x| y dx
nﬁz}"‘ log_v+£—‘£ «(3)
dx ydx

From (1), (2), and (3), we obtain
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.\""(Iogx-‘—i’\i 4 £)+ y"[log V+ l‘j—‘-] =0

dx «x v dx

o (.\'-" log x + xp*! ) 2 = (yx""' +y" log__v)

o dy w +y logy

Question 13:
dy
Find dx of function.

X v

V=X
Answer
X v

The given function is? =%

Taking logarithm on both the sides, we obtain
xlog y = ylog x

Differentiating both sides with respect to x, we obtain

d d d d
logy-—(x)+x-—(logy)=logx-—(y)+y-—(logx
= dx() dx( ey) . dx(') ’ a'x( = )
1 dy dy |
:I()g",r.l+x._.;=l0gx.;+-‘}._
Vv dx dx X
x dy dy y
=logy+——=logx—+=—
ydx dx x
x dy y
=>|—=logx |=——==—=logy
vy dx x

x—vlogx |dv y-xlogy
[ x=ylogxdy _. g.
y dx X

Ldy _y ( y—xlogy
dv x| x-ylogx
Question 14:

(cosx)” =(cosy)’
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Answer

The given function is(cos.r)‘ =(c087)

Taking logarithm on both the sides, we obtain
vlogcosx=xlogcosy

Differentiating both sides, we obtain

log cos x - & +y- i(Iog cos.x) = log cos y- i(r) + X L (logcosy)
dx dx dx dx
dy 1 d d
= logcosx—+ y- —(cosx)=logcos y-1+x- ~—(cos y)
dx cosx dx cosy dx
dy y . X . dy
= log cos x — + ———(—sinx) = log cos y + ——(~sin y)- =
dx cosx cos y dx

dy dy
= logcosx—— ytanx =logcos y—xtan y —
dx dx

dy

= (log cos x + x tan y) *i = ytanx +logcosy
dx

. dy ytanx+logcosy

dx xtany+ logcosx

Question 15:
dy
Find dx of function.

xy ="

Answer

See s ’(.l~‘ul
The given function is ™ = ¢

Taking logarithm on both the sides, we obtain
log(xy)= log(e"' %)

= logx+logy =(x—y)loge

= logx +logy =(x-y)xI1

=logx+logy=x-y
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Differentiating both sides with respect to x, we obtain

1. / i
i(log.\‘) + i(Iogy) = (_(\) e
dx dx dx dx

1 1dy dy
= —t——= | -
X ydx dx

h ]
=1 +l d—‘ - |_l
\ y)dx X

(_)'Jrl\‘d_v x~—1
= | — =
(21

\ Y
Cdy _y(x-1)

Tdx x(y+1)

dx X

f(x)=(1 +x)(| +—,\~“‘)(| +.\‘4)(] *".R)

Find the derivative of the function given by’ and hence

find J (])
. Answer

X o N i:452 AV 8
The given relationship iS"('\)_(]Jr'7‘)(l i )(-I+" )(] 3 )
Taking logarithm on both the sides, we obtain
log f(x) =log (1+x)+log(1+x")+log(1+x*)+log(1+x*)

Differentiating both sides with respect to x, we obtain
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| 1 { d d p
R [‘/(x)]: ¢ log (1+x)+ = log (1+x° )+ |Ob(|+\’) —‘lvlog(l+.x')

j'(x) dx dx
1 d S 1 d 1 d 8
TR LG § PO 142 1 il § ETE
( ) ,( ) I+x dx +\)+l+.x‘3 dx( e )+1+x' dx( s )+l+x" d.\'( 22 )
. , | 1 N 1 =
x)= 11 2 “4x -8
=) 'f(v)[l+,r+l+.x'3 \’+l+x* . +l+x" SY]

_/"(x)=(l+.\‘)(l+x3)(l+x*)(l+x*)[ L 2x2 g 4_\»: 1 8".78}

1+x 1+x° 1+x° 1+x

+1 1+ 1+ 1+

onos .f~f(n>=<1+l>(l+f)(n+1~')(1+1“>[1

X2x2x% 2[|+2+4+8:I
> S e e

1 2x1 4xP sxl’]
+ 4

(l+2+4+8

~l6xl~ =120

Question 17:

Differentiate (."‘; —3x +8)(.r1 +7x+ 9)

in three ways mentioned below
(i) By using product rule.

(ii) By expanding the product to obtain a single
polynomial. (iii By logarithmic differentiation.

Do they all give the same

answer? Answer
Lety = (x’-‘ —5x+ 8)(x} +7x +9)

()
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letx’-5x+8=wandx’' +7x+9=v

Ly=uv
Q—ﬂ. » ._.‘ r et S
= R (By using product rule)
= % = %(x3 —5x+8)-(x"+7x+9)+(.\'3 —5x+8)-%(x; +7x+9)

:% =(2x-5)(x’ +7x+9)+(x* - 5x +8)(3x° +7)

dy 2

= = =2x(x-*+7x+9)—5(x‘+7x+9)+.x (3x2+7)—5x(3x:+7)+8(3x:+7)

dx

N d‘ =(2x‘ +14x% + 18x)-5x~‘ ~35x~ 45+(3x‘ +7x3)—|5x-‘ ~35x+24x" +56

dx

dy =5x" =20x" +45x° =52x +11
dx

(i)
y=(x*—5x+8)(x" +7x+9)

Il

x* (.\'J +Tx+ 9) - 5.1‘(.\:2 +Tx+ 9) + 8(.\'" +Tx4 9)

X4+ T7x +9x7 = 5x* =35x7 —45x +8x" +56x+ 72

=x" =5x +15x° =263 +11x+ 72

% - % X' =5x" +15x° =26x" +11x + 72)
ax ax
d 5 d a’ 5 d : d d
= (x) =5 () H15—(x1) =26 () +11-(x)+—(72)

=5x' =5x4x* +15x3x* =26 x2x+11x1+0
=5x" —20x’ +45x* - 52x +11

(iif) y= (\ -5.r+8)(.\" +7x +‘))

Taking logarithm on both the sides, we obtain

logy = Iog(x’ —5x+8) +log(x* +7x+9)

Differentiating both sides with respect to x, we obtain
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ldv d s d 3
—=—log(x" =5x+8)+—log|[x" +7x+9
vdx dx ( ) dx ( )
1 ? | d . ] d 3 5
j_ﬂ: . —-—(1" _5_\~+g)+7ﬁ t—[r +?x+9]
ydx x"-5x+8 dx x +7x4+9 odx -

::*d‘]:_}’ = ] >::(2x—5)+ - ] X (3.\'3 -+7)
dx X —5x+8 X +T7x+9 :

:>ﬁ=(f—5x+8)(x"+‘?x+9) @L’x_—s + ?x3+7 }

dx ' X —5x+8 X +7x+9
—(Zx—S)(x‘+7x+9]+(3x:+7)(_~(3_5x+g)
[3‘1 - 5.¥+8)(x’1 +7,t+9}

o s o.
= ;‘ = (x' —5x +8)(,r“ +Tx4+9

™

= % = 2.\'(1‘" +7x+ 9)— S(X‘ + 7:+9) +3x° (x: -5x+ 8)+’7 (f - 5x +8)

= j; =(2x" +14x" +18x) - 5x* -35x— 45+ (3x" —15x" +24x ) +(7x" —35x+56)
&

Sx' —20x° +45x% —52x+11

— =
dx

From the above three observations, it can be concluded that all the results of
dy

dx are same.

Question 18:
If u, v and w are functions of x, then show that
G du dv dw
—(u.v.w) = — VWA U — W+ UV, —
dx dx dx dx
in two ways-first by repeated application of product rule, second by
logarithmic differentiation.

Answer

Lt ¥ UVW= u.(v.w)

By applying product rule, we obtain
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» dl d
s — ﬂ.(\-‘.u') +u.—(v- w)
dx  dx : dx
dv  du av dw : .
=~ =—yWwt+u|l — -wH+v.— (Agam applying product mle)
dx  dx dx dx
dv  du dv dw
— = VWU — WUV

dv dx dx X
By taking logarithm on both sides of the equation .V = #-¥"W we obtain
log y =logu+logv+logw

Differentiating both sides with respect to x, we obtain

| dv d, . d d
== logu )+ logv)+ logw
y dx dx( gu) dx( gv) d.\‘( gw)
1l dv ldu ldv 1dw
== ——

y d wudc vde wadrx
dy ( ldu ldv 1 dw)
=D>——=y| ——

d “\udc vdx ;E
] ( ldu 1ldv 1 a’w)
= = U VW, —— o —— o ——
dx ude vdrx wdx
dy du dv dw
S = et Ve WA Y WA UV
dy dx dx dx
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If x and y are connected parametrically by the equation, without eliminating the
dy
parameter, find dx .

x=2a, y=af’

Answer

- - §—3 ’) : Jom— ] J
The given equations are* = 24!~ and y = at

‘I'hcn.ﬁ = i(Zat: ) =2a i(l') =2a-2t =4at
dt dt dt
dy d

7—-E(ul”‘)za‘;—i’(!")=u~4'l1 =4ar’
¢

)
_dy dt ) 4at’ Zp

oy (dx) dat
dt

If x and y are connected parametrically by the equation, without eliminating the
dy

parameter, find dx

X =acos B,y =Dbcos

6 Answer

The given equations are x = acos B8 andy = b cos 0

Then, L —(acos@)=a(-sin@)=-asinf
do do
B i(b cos@)=b(—sin@)=—bsin0
dg do
dy 3\

L dy \dBJJ _—bsin@ b

oy [ dx\ -asinf® a
a0
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If x and y are connected parametrically by the equation, without eliminating the

dy

parameter, find dx

X =sint, y = cos 2t

Answer

The given equations are x = sint and y = cos 2t

=5 dc d ;.

[hen, — =—(sint)=cost
drdi

dy d x d .

— =—(cos2r)=—sin2s-—(2r)=-2sin 2t

dr dt dr -

(d_v)

\dt ] —2sin2t -2-2sintcost

(d\'w

\

di )

dy :
S—= = =-4sin¢
dx cos/ cost

If x and y are connected parametrically by the equation, without eliminating the

d}'
parameter, find dx
4
x=4, y=—
!
Answer

The given equations are X =4/ and y = 7
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dr  d

—=—(4t)=4
dr dz( )=
dr o dr drit \ ! !

Question 5:

If x and y are connected parametrically by the equation, without eliminating the
dy

parameter, find c/_\ .

x =cosf —cos 20, y =sin@—sin 20

Answer
The given equations are™ = cost —cos 26 and y = sin @ —sin 26

Then, L) = G (cos@—cos26) = i(cos a)- i(cos 20)
do do do de

=-sinf - (-2sin26) =2sin26 —sin @

ﬁ:i(sing—sinzﬁ)=i(5in9)_i(5in20)
do de do 48,
~-2co
("J
dy _\df) cosf-2cos2f
(a’x) 2sin 2@ —sin @
16
Question 6:

If x and y are connected parametrically by the equation, without eliminating the
dy

parameter, find dx

=a(0-sin@), y=a(l+cosb)
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Answer

The given equations are™ a(@-sin@) and y = a(1+cosb)

Thcn,% = a[—(—{%(&)—é%(sin 0)} =a(1-cos8)

= a|:§%(l)+:;%(cos¢9):l =a[ 0+(-sin@) |=-asin®

&) o 6 6

ﬂ_ do) a8 E _—hsmzcosz ——cosz—_cm—

Cdx [fl\:) a(l-cos@) 20 sin? 2
de 2 2

Question 7:

If x and y are connected parametrically by the equation, without eliminating the

d_\‘
parameter, find dx .
sin’ cos’ t
S s V=
Jeos 2t Jeos 2t
Answer
. } K _]
sin’ ¢ cos’ ¢
= and y =

The given equations are ~ VCOS2f Veos 2
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dx d sin’ 1
Then,— = —| ——
dt dr cos 2t
d . ]
Veos2f - (bll‘l I) sin’ 1+ \Jcos 21
_ dt dt
cos 2t
v'u)s? -3sin’ 1- —(sm{) sin’ 1 x——— i(ms_{)
"v'wsz
cos 2t
- 1
3Jcos 2z -sin? reost—— L (_2sin2s
24/ cos 2r ( )
cos 2t
_ 3cos2¢sin’ fcost+sin’ 1sin 2¢
cos 2¢+/cos 2t

ﬂ_i cos’ t
dt  dt| +Jcos2t
«Jcoslf.%(cos’:)—cos]f‘%(xfms?{)

cos2t

Jcos 2t 3cos’ - —(cost) cos' 1. J_ dr(cosz.r}

cos 2t

. ’ 1 y
3+Jcos2t.cos’ t{—sint)-cos’ t-———.(—2sin 2
_ ( ) 2Jeos 2 ( )

cos 2t
—3cos2t.cos’ .sint +cos’ (sin 2t

cos2i-+Jcos 2t
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dy
_dy \dt) -3cos2t.cos’t.sint+cos’ 1sin2i
" dx [a’.\') 3cos2tsin® tcost +sin’ 1sin 2t
dr

~3¢0s21.cos” 1.sinf +cos’ 1(2sin/ cost)

3cos2rsin® fcost +sin’ 1 (2sint cost)

Sinf cost [—3005 2t.cost +2cos’ 1]

Il

sinf cos! |:3cos 2¢sint +2sin’ !]
[—3(2cos“ t~1)cost +2cos’ t:l cos 2l = (2cos:l = I),

V [3(] —Zsinzt)sinr+25in‘1] cos 21 =(I - 2sin21)

~4cos’ 1 +3cost
3sins —4sin’7

—cos 3 cos 3t = 4cos’ 1 —3cost,
sin 3 sin3f = 3sinz —4sin’ ¢
=—cot3f

Question 8:
If x and y are connected parametrically by the equation, without eliminating the

dv

parameter, find dx

{ >
xX= a(cost +log tan EJ y=asint
Answer

I s
X = u(cost + logtan;) and y = asinft
The given equations are =
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dx frd N | !
Then,— = u-[—(msr]+ 7{1% lan;]}

"t i dt 2
‘ | d{
=¢| —sInf+ -'FT tan;
tan at 2
i 2
[ t o, od(r
=da| —-sinf+cot—-se¢c” —-
2 2 drl 2
| 3\’
cos | I
=g —sInf+ = X —
a, i 2
sin cos
i 2 2
, 1
=a|—-sinf+———
A b
2sin—Ccos —
L 2 2
_ . 1
=d| —s5nf+—-
sint
—sin®f+1
=d| ————
sin’
cos” |
=g—
sint
day d., .
— =a—(sin?) = acos?
ddt di :
dy
dy _\dt J acost sinft
So—= = = =tant

" dx ( de acoszf cost
,dIJ sint

Question 9:

If x and y are connected parametrically by the equation, without eliminating the

dy
parameter, find dx

x=asecl, y=btan@
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Answer

The given equations are ¥ = @sec and y =bhtan 0

Then; 2= a-%(sec(?) =asecftané
(4

do
4 d ~
m;:b-—(tan()):bsec‘()
do de
)
.'.d'v= dd = bsexd :bsecf)cot(): bcos(? =bx, = —cosec
dx (dx] asecftanf a acos@sing a sind a
do
Question 10:

If x and y are connected parametrically by the equation, without eliminating the
dy

parameter, find dx

x=a(cos@+0sinb), y=a(sind—-0Ocosd)

Answer

The given equations are™ = a(cos@+0sin@) and y = a(sin@—0cosb)

do de

= a[-sin@ +6cos@ +sin O] = ad cos &

Then, £=a i(:osonti(()sin()) =a —sin()+Oi(sin0)+sin()i(())
do de de

Y _ a[i(sina)—i(ecose)} = a[cos() —{Bi(c050)+cose~i(9)}]
de do do ded dé

= a[cos+0sin 0 —cos 0]
=afsinf

dy
.dy _\d0) _absind _

tan @

T dx [dx') " afcosO
de
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Question 11:
: cos~! dy y
%= \/a“" = \/a“‘ ‘, show that — =-=
If dx X
Answer
S sin”'¢ > o cos™ 't
The given equations are™ = V¥ andy =Va

-

x=+a™ ' and y=+a
; 1 !
:)I:(asm l):! and_}-':(ff'” '1)2

i sin” s lvmﬁ" i
= Xx=g* and y = a*
15m" []

~

Consider x = g

Taking logarithm on both the sides. we obtain

‘ 1.
logx= Ssin" loga
| dx |1 o :
s——=—loga-—(sin'¢
x dr 2 . d;( )

de  x
—>—==loga-
dr 2

|
-7
jd_x _ X loga
dt Z\W

cos'r

bt | —

Then, consider y =a
Taking logarithm on both the sides, we obtain

1
log}-’z;cos floga

; l-ﬁ—llo a-i(‘cn}s 1)
Ty ode 2 BE

dv  yloga - = ]
= === | ——

dlt 2 [\,l]_;-“' }
— dy _ —yloga

dt  2\1-7
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[ [{}! \’ { —'1' lOg a ]
cay \adt) \2N1-¢) _»

E—[d\'j—( xloga ) =
({t 2V!]__r:/

X

Hence, proved.
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Find the second order derivatives of the function.
X +3x+2
Answer

| 2
LetV =X +3x+2

Then,
dy d g, d d
—=—i{x" )+—(3x)+—(2)=2x+3+0=2x+3
dx (l\'( ) dx ( ) t/.\'( )
dy d 5 d d .
So——=—(2x43)=—(2x)+—(3)=24+0=2
dx” dx( )) d\( ) d.\‘( )

Find the second order derivatives of the function.

20

Answer

Lety =x"

Then,

& d g ) =20x"

de  dx’

242 4 (0x) =20 L (x°) =20-19- 4" = 380"
dx-  dx dx

Find the second order derivatives of the function.
X-COSX
Answer

Lety = X-COSX

Then,
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ﬂ o d
dx dx dx

((llrv = %[cos x—xsinx|= ;Ti(cosx)— %(r sin x)

; A d d i A
=—=SInx—|sSmMmx-—(x)+x-—(SInx
: I: * dx(x) tlr( )]

= —sinx—(sin.x+xcosx)

= —(xcosx+2sinx)

Question 4:

Find the second order derivatives of the function.

log x

Answer

Lety = logx

Then,

dy d |
—=—1(logx)=—
ah dx( E ) X

; dl)’_im-;'
Tdyt delx x
Question 5:

Find the second order derivatives of the function.
1
x logx
Answer
3
LetV =% logx

Then,

=—(x-cosx)= cosx-i(x)+x‘/—l(cosx)= cos x+1+x(—sinx)=cos x —xsinx
2 ax
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‘jV [ 3 [{ 1 4 d
—=—|xlogx|=logx-—(x" })+x -—(logx
dx dx[ . ] . dx( ) (i'c( . )

2 ] 7 |
=logx-3x’+x —=logx 3x" +x°
X

=x"(1+3logx)

.dzy e

== x* (1+ 3Ingx)j|
v

-

d
dr

=(1 +3h)g.\')-%(f)+ x*—(1+3logx)

=(1+3

Question 6:

, .3
logx)-2x+x"-—
x

2x+6xlog x +3x
Sx+6xlogx
=x(5+6logx)

Find the second order derivatives of the function.

e’ sinSx

Answer

LetY =€ sin5x

v

dx

~d’y
dx*

Then,

:; (e sin 5x) = sin 5x- ;I; (e7)+e ::‘ (sin5x)

sinSx-e” +e"-cosSx- %(Sx) =e"sinSx+e" cos5x-5
dx

e” (sin5x + 5cos 5x)
2 [e" (sin5x + 5cos 5.1')}
=(sin5x+5cos5x)- ‘Z (e7)+e ;; (sin5x+5cos5x)

— . ad . W d
=(sin5x+5cos5x)e" +e [cos 5x- 5 (5x)+5(—sin5x)- o (5.\’):|

X dx

=e"(sin5x+ 5cos 5x) + e* (5cos Sx - 25sin 5x)

=e"(10cosSx — 24sin 5x) = 2¢* (5 cos Sx—12sin 5x)
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Question 7:

Find the second order derivatives of the function.
€® cos3x

Answer

Lety =e" cos3x

Then,
j‘r = :lir (e"" - COS 3.\') = cos3x- :Z‘ (e“"') +e*. :iix (cos3x)
o d . d
—f & ‘3_-’(”-—‘—-- b '+'.)6‘\' —S1 3.' O 3-
cos3x-¢ dx(6v) e* -(—sin3x) dx( x)
- 6¢" cos3x —3e™ sin3x (1)

%} = gx( 5¢°* cos3x — 3¢ sin Bx) =6- :}i (e“ cos3x) -3. ciilv (e""' sin 3.x)
=6 -[6e’”’ cos3x—3¢" sin 3x:| -3 -[[vsin 3x- ‘:i (e™)+e” -%(sin 3x) [ Using (1) ]
=36¢™ cos3x—18¢* sin3x — 3[sin 3x-e™-6+e" - cos 3x-3]
=36e" cos3x —18¢™ sin 3x —18¢ sin 3x —9¢* cos3x
= 27¢™ cos3x —36¢° sin3x
=0e™ (3 cos3x —4sin3x)

Question 8:

Find the second order derivatives of the function.

tan”' x

Answer

= -1 -
Lety =tan" x

Then,
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£=itan'x)= : ;
de dx 1+x°
dzl" d | d s\l 7\ 2 d )
i m— —|=—(1+x") =(=-1){1+x") -—(1+x°
)0 =) )
= -2
= I —x2x = a3

Question 9:

Find the second order derivatives of the function.
log(log x)
Answer

LetV= log (log x)

Then,
.4 I d ;
pridmie l x) |=———(l X)= =(x] X
dx dx[og( og‘)] log x dx( 0gx) xlog x (xlogx)
%:%[(\ l()gx)’l]:_(_]).(_\. |0g.‘,)4 '%(l’l()gx)
-1 d d
=————=|logx-—(x)+x-—(logx ]
(xlogx) I: d\'( ) ci\'( )
= ~(1+log:
:_l~-|i|0gx-l+,\--—l-} =_(Lg:')
(x logx)’ x (xlog ,\)
Question 10:
Find the second order derivatives of the function.
sin(log x)
Answer
Let? = sin(logx)

Then,
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2 %[Si" (log x) | = cos(log x)'%(logx) = ooslog )

X

Tdet dx

L X ;‘Lj—\’ [cos(log x)] —cos(log x)- —:1% (x)

2

X

X [-sin (log x)- ;i(logx)} ~cos(logx).1

X

~xsin(log vc)l ~cos(log x)
X

- [sin (log A)+ cos(log r)]

X

Question 11:

d*y

S 4 s — ety =0
1§V =3cosx 35‘"",provethatdx-' )

Answer

It is given that, =5cosx—3sinx

Then,
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g}\ - Zj’iv (SCOS .\') 3 ;_i.(%i" -") = 5%(003 x) -3 %(sm .\')

=5(-sin x)-3cosx = ~(5sinx +3cosx)

c:l‘ = di[—(Ssin x+3cosx) |
X" X
|5 sinx) 3.4 o)
= —[5cosx+3(—sinx)]
= ~[5cosx—3sinx]
= —-‘\.'
d—)+\ =0
dx”

Hence, proved.

Question 12:

d’y
y — =1 ——-T
1fV =95 % find dx” in terms of y alone.

Answer
-1
It is given that, V) = €05 X

Then,
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T -] -
P i e G

L LY -]s
det dx
1‘I—r

d 1' -

F

W= cos” lx=x= Cos v

(1)

.—.l-)—

x(—’r

i)

Putting x = cos v in equation (1), we obtain

d’y  -cosy
F | T
e Vl(] — it ‘}
d’y  —cosy
=% i-z = -
@ J(sinz‘}-')
_ =Cosy
sin' v
—Cos y 1
= x—
siny  sin‘y
d’y .
— = —cot y:cosec”y
de”
Question 13:
y =3cos(logx)+4sin(logx -
If- ( g) ( g),showthat”+“+‘ 0
Answer

Itis given that,” = 3cos(logx)+4sin(logx)

Then,
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»=3 ~%[cos (logx)]+4- %[sin (logx)]

E 3-[—sin(logx)-%(logx)] +4~[cos(logx)~%(logx)}

~ -3sin(logx) i 4cos(logx) 4cos(logx)-3sin(logx)
L. X x - X

d (4cos(logx)—3sin(logx)]
LYy =—

dx .

_ x{4 cos(log x) - 3sin (log x)}' - §4 cos(log x) - 3sin (log x)}(x)'

X

j4{cos(logx)}’ - 3{sin (log x)}' ] - {4 cos(log x)-3sin(log x)}.l

Y

¥°

% sin (log x).(log x)' ~3cos(logx).(log x)'] —4cos(log x)+3sin (log x)

]

= =
x[~4 sin(log x). ks 3cos(logx). ]-] ~4cos(logx)+3sin(logx)
X X

- 2

Fe
—4sin (log x)—3cos(log x)— 4 cos(log x)+3sin (log x)
xl

~ —sin(log x)—7cos(logx)
= 5
Xy, Exp Y

_2 [—sm(log x) —:7 cos(log x)J ; x[ 4cos(logx)—3sin (log x)) o TR
X

X
= —sin(logx)—7cos(log x)+4cos(log x)—3sin(log x)+3cos(log x) + 4sin (log x)
=0

Hence, proved.

Question 14:

~

mx e 4 'Y—(Irl+n)—(£‘:+)r:rz_1r=0
1tV =Ae" + Be”  show that dx’ dx
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Answer

It is given that, ¥ = Ae™ + Be™

Then,

% =A- %(e"" )+ B- %(e’“) =A -e’"'.%(mx) +B-e™ ~%(nx) = Ame™ + Bne™
d’y d o d 1 a1

e = ‘—{A—_(Ame + Bne ): Am‘z(e )+ Bn'a(e )

= Ame™ L (mx)+ Bn-e™ i( nx) = Am’e™ + Bn’e”™
dx dx

-

y dy
——(m+n)=—+mny
G dx

5 2
= Am~e"™ + Bn ™ - (m + n) -(Ame"“ + Bne™ ) + mn(Ae"'”r + Be"")

mex e e

2 ¥ 2 2 3 2 X
= Am-e" + Bn'e" — Am~e"* — Bmne" — Amne™ — Bn“e™ + Amne™ + Bmne"
=

Hence, proved.

Question 15:
d’y -

—~ =49y
, show that dx”

Y= 500e™ +600e 7"
Answer
It is given that, ¥ = 500e" +600¢ ™

Then,
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Y _ 5004 () +600. d (e™)
dx de* dx :
=500-¢"™ -i(?x]mme = i(—?x)
dx : dx
=3500e" — 4200e ™
2y _ -
242 _3500. 4 ()~ 4200.-(e™)
dx dlx ‘ ae™
- 35{)(1-e?“,i(7x)—4200 g™ -i(—h)
dx dy

=7%3500-¢™ +7x4200-¢
= 49%5002™ + 49 600e ™"

= 49(500e™ +600e ™)
=49y

Hence, proved.

Question 16:

ry (@
1 Lryl)=] , show that ¢ \dx

Answer

The given relationship is (x+1)=1
(?'(},\:+]):|
; |
T QT = —
x+1

Taking logarithm on both the sides, we obtain

= log A
R FY

Differentiating this relationship with respect to x, we obtain
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| e T
]_(' ')'(H])J x+1

Hence, proved.

Question 17:

3

1Y (tan’ 'Y)_ , show that

Answer

) =— Vl :
The given relationship is (tan x)
Then,
d
y, =2tan”’ x(—(lan"' .r)
dx

S =21ah X

14 x*
= (1+x%)y, =2tan"' x
Again differentiating with respect to x on both the sides. we obtain

(I+.\'3)y1 +2xy, = 2( l ]

14 x°

= (l+.\':)2 ¥y, + 2.r(l+x:)_v, =2

Hence, proved.
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Verify Rolle’s Theorem for the

flx)=x+2x-8 ,xe[-4,2

function* ] Answer

_ _ (x)=x*+2x-8 . _ o . .
The given funct|on,j( ) , being a polynomial function, is continuous in

[—4, 2] and is differentiable in (-4, 2).
f(-4)=(-4)" +2x(-4)-8=16-8-8=0
f(2)=(2) +2x2-8=4+4-8=0
~f(-4)=f(2) =0

= The value of f (x) at —4 and 2 coincides.

Rolle’s Theorem states that there is a point c € (-4, 2) such that f’(¢)=0

f(x)=x*+2x-8

= f(x)=2x+2

s e)=0
=2c+2=0
=c=-1, wherec=-1¢(-4,2)

Hence, Rolle’s Theorem is verified for the given function.




Class XII Chapter 5 - Continuity and Differentiability Maths

Examine if Rolle’s Theorem is applicable to any of the following functions. Can you
say some thing about the converse of Rolle’s Theorem from these examples?

0 S (x)=[x] forxe[5, 9]

(i) f(x)=[x] forxe[-2, 2]

(x)= x> =1 for x 2
Gi) f(x)=x"—1forx c[l. ..]
Answer

f:[a, b] >R it

By Rolle’s Theorem, for a function*
(a) f is continuous on [a, b]

(b) f is differentiable on (a, b)
(c)f(a) =f(b)

then, there exists some c € (a, b) such that -

f'(e)=0

Therefore, Rolle’s Theorem is not applicable to those functions that do not satisfy any

of the three conditions of the hypothesis.

0 f(x)=[x] forxe[5, 9]

It is evident that the given function f (x) is not continuous at every integral

point. In particular, f(x) is not continuous at x = 5and x =9
= f(x) is not continuous in [5, 9].

Also, f(5)= [5] =5and f(9)= [9] =9
~f(5)= f(9)
The differentiability of f in (5, 9) is checked as follows.
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Let n be an integer such that n € (5, 9).

The left hand limit of /" at x = n is.

. S(n+h)=f(n . |n+h|=|n . h=1=-n .. -1

lim ( )=/ ( )= llm—[ ] [ ] = lim —=|lim—=u
0 h h—0 h =0 1 =0 h

The right hand limit of f at x = n is,

X n- £ hl- s
lim .”/7(7n+ I—) ,-'/ (—”—) = |lim [”+ ’l] ['I] = |lim a1 lim0=0
h

h->0 7 h->0 h—) 1 h—>0

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x

=n
~fis not differentiable in (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of

Rolle’s Theorem.

f(x)=[x] forxe[5, 9] .

Hence, Rolle’s Theorem is not applicable for*
(i /(\):[r] t'or.\‘c-[—l 2]

It is evident that the given function f (x) is not continuous at every integral

point. In particular, f(x) is not continuous at x = =2 and x = 2

= f (x) is not continuous in [—-2, 2].

Also, f(-2) =[—2] =-2andf(2)= [2] )
S f(=2)= f(2)
The differentiability of f in (—2, 2) is checked as follows.
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Let n be an integer such that n € (-2, 2).

The left hand limit ol’/' atx =n is.

(n+/ +/ 22 -
" f(n+h)— [N r] [n] ~1-n — I e
=0 h h_m ;;_m 1 =0 /7
The right hand limit of f at x = n is,
(n+# +/
lim .ﬂ/V(rn 1) [” z] [”] = lin =|lim0=0
h-0) h h m h- »0 h—{)

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x

=n
~fis not differentiable in (-2, 2).

It is observed that f does not satisfy all the conditions of the hypothesis of

Rolle’s Theorem.

f(x)=[x] forxe[-2, 2].

Hence, Rolle’s Theorem is not applicable for
(i) f(x)=x*-1forxe[l, 2]

It is evident that f, being a polynomial function, is continuous in [1, 2] and
is differentiable in (1, 2).

£(1)=(1) =1=0
£(2)=(2) -1=3

AF(1) #£(2)

It is observed that f does not satisfy a condition of the hypothesis of Rolle’s Theorem.
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Hence, Rolle’s Theorem is not applicable for-/ (‘) =3~ Liorx C[]‘ 2].

:1-5,5 Mx
If J [ ]_) . is a differentiable function and if J ( ‘)does not vanish anywhere, then
prove
(=5)# f(5
ihae/ (927 (5)
Answer

/:[-5.5]>R

It is given that is a differentiable function.

Since every differentiable function is a continuous function, we obtain
(a) f is continuous on [-5, 5].
(b) f is differentiable on (-5, 5).

Therefore, by the Mean Value Theorem, there exists c € (=5, 5) such that

f'(c)= —f(i)__( ! \()4 )

=101"(c)=£(5)-f(-5)

It is also given that f(\) does not vanish anywhere.
s (e)#0

=10f"(¢)#0

= f(5)-f(-5)=0

= f(5)# f(-5)

Hence, proved.

f(x)=x*-4x-3

)
Verify Mean Value Theorem, if * in the interval[u ], where

u=landh=4_
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Answer

The given function is/ (X) = —4x=3

f, being a polynomial function, is continuous in [1, 4] and is differentiable in (1,
4) whose derivative is 2x — 4.

f(1)=1-4x1-3=-6, f(4)=4"-4x4-3=-3

S(B)-1(a) _f(4)-1(1) _-3-(-6) _

b—a 4-1 3 ;
Mean Value Theorem states that there is a point c € (1, 4) such that

=1

W | W

f'(c)=1

()=
= 2c—4=1
i
=c=—,wherec==€(l, 4)
2 2

Hence, Mean Value Theorem is verified for the given function.

f(x)=x"-5x*-3x

Verify Mean Value Theorem, if in the interval [a, b], where a = 1 and

b = 3. Find all “€(1:3)for which
['(e)=0 Answer

The given function f i /(%) =x"—5x"-3x

f, being a polynomial function, is continuous in [1, 3] and is differentiable in (1,

3) whose derivative is 3x2 — 10x — 3.

F(1)=r=5x1I"=3x1=-7, f(3)=3"-5x3"-3x3=-27

IO)-1(@)_fO)-10)_27-(1)_

b-a 3~1 3-1




Class XII Chapter 5 - Continuity and Differentiability Maths

Mean Value Theorem states that there exist a point c € (1, 3) such that f(¢)=-10

f'(c)=-10
=3c*-10c-3=10
=3¢’ -10c+7=0
=3¢’ -3¢c-Tc+7=0
=3c(c-1)-7(c-1)=0
=(c-1)(3¢-7)=0

7 5
=se=], :‘wherec:Ze(L 3)
3 3

Hence, Mean Value Theorem is verified for the given function and

_/"((‘):()

only point for which

Examine the applicability of Mean Value Theorem for all three functions given in
the above exercise 2.

Answer

Mean Value Theorem states that for a function J :[”‘ b] —R , if
(a) f is continuous on [a, b]

(b) f is differentiable on (a, b)
f'(c)= /(/))—/(u)

then, there exists some c € (a, b) such that h—a

Therefore, Mean Value Theorem is not applicable to those functions that do not

satisfy any of the two conditions of the hypothesis.
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(i) S (x)=[x] forx €[5, 9]
It is evident that the given function f (x) is not continuous at every integral

point. In particular, f(x) is not continuous at x = 5and x = 9
= f (x) is not continuous in [5, 9].

The differentiability of f in (5, 9) is checked as follows.
Let n be an integer such that n € (5, 9).

The left hand limit of / at x = n is.

if R J =
- S(n+h)—-f(n) o [n+ z] [n] n . | e
[N h bq“ ;;_m h Ji—=0 h
The right hand limit of f at x = n is,
(n+/ / -7
lim / (-” Jer [n+ z] [”] 4 lim0=0
h->0 h h w b .u h h—{

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x

=n
~fis not differentiable in (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of Mean
Value Theorem.

f(x)=[x] forxe[5, 9] .

Hence, Mean Value Theorem is not applicable for
(i f(x)=[x] forxe[-2, 2]

It is evident that the given function f (x) is not continuous at every integral point.
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In particular, f(x) is not continuous at x = -2 and x = 2
= f (x) is not continuous in [-2, 2].

The differentiability of f in (—2, 2) is checked as follows.
Let n be an integer such that n € (-2, 2).

The left hand limit of / at x = n is.

+/ +/ =
ood (n+h)=71(n) — [n z] [n] nl T S
_w h 'J—)U ;_su h -0 h
The right hand limit of f at x = n s,
(n+/ / ~
lim / ('1 1) [”+ ’] [”] " im0=0
h->0) h h- m ); .() 7 h—()

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x
=n

~fis not differentiable in (-2, 2).

It is observed that f does not satisfy all the conditions of the hypothesis of Mean

Value Theorem.

f(x)=[x] forxe[-2, 2]

Hence, Mean Value Theorem is not applicable for
(i) f(x)=x"-1 Ior.\‘c[l, 2]
It is evident that f, being a polynomial function, is continuous in [1, 2] and

is differentiable in (1, 2).
It is observed that f satisfies all the conditions of the hypothesis of Mean Value Theorem.
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Hence, Mean Value Theorem is applicable

f(x)=x"—1forxe[l,

5
for* "]. It can be proved as follows.

f()=r-1=0, f(2)=2"-1=3
f(b)=f(a) _£(2)-£(1) _3-0_

b—a 2-1 ]

3

2x

1(x)

3 _ )
:.*)1?:;:].:3, where 1.5 E[I,E
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Miscellaneous Solutions

Question 1:
(3x2 —9.\‘+5)0
Answer

- ]
Lety = (3.:' —Ox+ 5)

Using chain rule, we obtain
dw d

9
= czx(” ~9x+5)
=9(3x* ~9x+5) - i()\’ ~9x+5)
=9(3x* —9v+5)” 6x-9)
=9(3x" ~9x+5) -3(2x-3)

27(3x° «)Hs)( -3)

Question 2:
3 6
SIn” X +COS X
Answer

Let y =sin’ x+cos" x

y d d 6
5 ;‘\ dr(sm \)+E(cosy\‘)

=3sin’ J\'-i(sinx)+6cos5 x~%(cosx)
=3sin’ x-cosx +6¢cos” x-(—sinx)

=3sin xcos x(sin x-2cos’ .\‘)

Question 3:
(5“_)31;1“2.\'

Answer




Class XII Chapter 5 - Continuity and Differentiability

Maths

)‘h:nxl x

Lety =(5x
Taking logarithm on both the sides, we obtain

log y =3cos2xlogSx

Differentiating both sides with respect to x, we obtain

ldy_ S[Iog 5x -i(cos 2x)+cos2x i( log 5"')J
d dx

ydx x
dy [ d 1 d
= —=3y| log5S5x(—sin2x)-—(2x)+cos2x-— -—(5x
e 7| 8 5x( ) dx( ) Sx dv( )}
dv B : 08 2 x
=2 _ 3y| -2sin2xlog5x + o8
dx L %
; (3cos?2
= B 3y 2CY _6sin2x log 5x
dx L X
dy jeos2y | 3COS2X ; i
4 ;z(Sx)‘ [) —6sin ?.xlogaxJ
dx X
Question 4:
sin"(.\'\/;), 0<x<1
Answer

Let y =sin™' (\\/T)

Using chain rule, we obtain




Class XII Chapter 5 - Continuity and Differentiability Maths

\ X
1 d ( 27
= —| x4
l-l-{ G.'.Y.‘_‘ /
1 % -
= = x o
1-x° 2
_ 3k
241=-x°
3=
2Y1=x"
Question 5:
X
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e
cos

Lety=——2

V2x+7

By quotient rule, we obtain
V2x+7 a [cos" x)—(cos" xj d
dx e 2

(sznf

Y

-1 d(x 25X I d
2x+7 - - : —(2x+7
o (‘T dx(2) (cos 2)2J2x+7 dx( a
}]_ 3
2

A

2x+7

-1 X 2
J2x+7 —[cos ! ] )
iy 2)2y2x+7

2x+17

a X

= —2x+7 B s P
V4-x* x(2x+7) (\/2x+7)(2x+7)

e
cos
N 2

1
=— + =
Vd=x*2x+7 (2x+7)5

Question 6:

1| V1+sinx ++/1—sinm
cot ,O<x<5

J1+sinx —/1-sinx

Answer
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(1)

Let )l_,{dl+sinx+\/l—sin.\}
Y=

J1+sin x —1—sin x

Then \/l +sinx + JI —sinx

V1+sinx —+/1-sinx
(\/l+sinx +\/l—sinx)"
- (\/l +sinx - \/l —sinx)(\/l +Sinx + \/I —sinx)

. (1+sinx)+(1-sin x)+2V{(]—-sin.r)(I +sin x)

(1+sinx)—(1-sinx)
2+ 24/1-sin’ x
2sinx
_ 1+cosx

sinx

7 X
2¢0s” —
2

e X
2sin - cos
2 2

- &

X
=cot—

Therefore, equation (1) becomes

y=cot [cotﬁ)
2

X
>y==
2
dv 1d
.'.——_=—-—:(.\‘)
dx 2 dx
& _1
dc 2
Question 7:

(logx)™", x>1
Answer

I_,c( }.“ S ( ]og % )kng X
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Taking logarithm on both the sides, we obtain
log y = log x-log(log x)

Differentiating both sides with respect to x, we obtain

ldy d ) )
iy E[Iog.\ -log(log.\)]
— %Z—l = Iog(log.\').;—i(logx)‘* |08-"'%['°g(|0g"')]

dy | 1 d
= —=y| log(logx).—+log x - ——— - —(logx
dx { g(log ).r . log x d.r( 2 )]

dy I 1
= ——=y| —log(logx)+—
d "[x g(logx) }

' X
dy wer| 1 log(logx)
;o= =(log: —_—
dx ( o \ﬂ) [.\' X
Question 8:

cos(acosx+hsinx
( ) , for some constant a and b.

Answer
Let y = cos(acosx+bsinx)

By using chain rule, we obtain

LB icos(acosx +bsin x)
dx  dx

dy g : d .
e —sm(acosx+bsmx)-d—(ucos:c+bsm x)
ax X

= —sin(acosx+bsin x)'[u(—sin x)+bcosx]

=(asin x~bcosx)-sin(acosx+bsinx)

Question 9:

. (sinx~cosx) T 37[
(sinx—cosx) , — XL —
4 4

Answer
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. s (sin y—cosx)
Let y =(sinx—cosx)

Taking logarithm on both the sides, we obtain

. {sin x—cos;
Iog_y»:log[(smx—cosx) e '):|

= log y =(sinx—cos x)-log(sin x—cosx)

Differentiating both sides with respect to x, we obtain

T Z—‘ = % [ (sinx —cos x)log(sin x—cosx)]|

ydx dx
1 dy

1d
y dx dx

= X % = log(sin x —cosx)-(cosx +sin x)+(sin x —cos x)-
ydx

=8 (sinx—cosx) ™™™ (cos.x +sin x)-log (sin x —cos x) +(cos x +sin x)|

dx

2D (sinx—cosx)

[sinx—cosx) (
dx

Question 10:

x a 3 a . i
X X +ag-+a , for some fixed a>0and X >O

Answer
Lety=x"+x"+a"+a"
Also, letx" =u, x" =v. a" =w. and a” =5
SVSUF VWS
dy  du dv odw  ds
L= — +
e dy de de dx

v

=X
= logu = log x*
= logu =xlogx

Differentiating both sides with respect to x, we obtain

———=log (sin x—cosx)- 4, (sinx —cosx)+(sinx—cosx)- % log(sinx —cosx)
dx

(sinx —cosx)

cos x +sin x)[ 1+log(sin x - cos t)]

-i(sin X—cosx)
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1 du d

~ 2 logx-——(x)+x-—(logx)

i dx e dx

du 1

=>—=u|logx-1+x-—

elx X

~du
o

> — = x"[log x +1] = x" (1+log x)
cx '

Y= ﬁ‘(
dv d ¢
L)
dx dx
{h“ e |
= —=ax
dx

-(3)

w=a
= logw=loga"

= logw=xloga

Differentiating both sides with respect to x, we obtain
1 dw

d
—-—=loga-—(x)
w o dx dx

dw
= —=wloga
dx

4 2
= —=a'loga
dx

a

s=a
. . a .

Since a is constant, a” is also a constant.
ds

=0

= i)

From (1), (2), (3), (4), and (5), we obtain
dy

] =x"(1+logx)+ax"" +a"loga+0
dx

=x"(1+logx)+ax”" +a" loga
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Question 11:
UH(x-3) k>3
Answer

Lety=x"""+(x _3)\--‘
Also, letu=x"" and v =(x—-3)"

SY=u+y

Differentiating both sides with respect to x, we obtain

(1)

dv du dv
e S +_

dx dx dx

u=x"">
slogu = Iog(x‘:"‘ )
logu = (x* —3)log x

Differentiating with respect to x, we obtain

1 du d 3_,,’._ _1»_-,'_(1 5
Z'E"ng'ﬁ(" 3) } (,\ 3) dx(l()g.\)

s logv = Iog(.r—3)'(:
= logv=x"log(x-3)

Differentiating both sides with respect to x, we obtain
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1 dv 2 2

;.a=log(r—3]-a(x )+x -C&[Ing(.r—f%)]

:>1£=102(.r—3) WL Ai(x—}!]
v ey r—=3 dx

= jt_= v|:2_rlug(x—3)+ _'x‘ -1}

5

B (x _3)"'J [ .r'3 +2xlog(x- 3)]

du and dv
Substituting the expressions of dx dx in equation (1), we obtain

B z[f =3 +2xlogx]+(x—3)": l x‘} +2x Iog(x—B)}

dx X X

Question 12:

dy v:IZ(l—cost).leO(t—sint).—g<t<

CLg i
Find dx | if =

2
Answer

It is given that, y =12(1-cost).x =10(7—sin¢)

% = % IO(I—SinI)]= l()-%(r—sim) =10(1-cost)
d_d
dr dt

[f@) P PR
cdy \dr)  12sing TSNS 6 g
5

[12(1-cost) ] = 12-%(1 ~cost)=12-[0—(-sint) |=12sins
¢

Tdx o (dx) 10(1-cost) o962t
dt 2

Question 13:
dy

Find%if }“=5in_'x+sin" 1-x", -1=x=s1

Answer
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It is given that, y =sin ' x+sin ' +/1—x*

L _ i[sin' x+sin™ ﬁ}

Cde o dx

Q'V_i.; 1 il -
:}d—x_dx(&.m x)+dx(lsm V1 x)
D?: 7 I :+ 7 , I 1%(\'{?)

~ Wl-x \/1_(\'{:) dx

dy 1 ] 1 d -
=== +—- —l=-x"

de  J1-x* x 2J1-%° dx(- r)

) | |

W Ak —(—-2x

de  \J1-x? lx\/]—x:( )

dy_ 1]

d Jl1-x* -5
52wy

dx
Question 14:
VI FVIFE =0 e 1 < x <1, prove that
ﬁ__ 1
e (1+x)
Answer

It is given that,

.\'\/I+_v+y\/l+x =0
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= xfl+y =—pfl+x
Squaring both sides, we obtain
2 (14+5) = (1+3)

= x’ + .1':_\' = _\-‘1 +xy°

a 3

=>x -y =x’-xy
e .Tz - _]-’2 =Xy (_\-" - .,T)
=(x+y)(x-y)=0(y-x)
LXEy=—xy

= {l + x] y=—X

(1+x)

Differentiating both sides with respect to x, we obtain

=

(l+‘x)
&y (I+x):;' (x)—,x"jv(l+.\‘)_ (1+x)-x |

X 4

dx (1+x)° (1+x)° _“(l+.\‘)2

Hence, proved.

v“, —

Question 15:

-

(x—a) +(_1-'—b):=c: ¢ >0,

If ' , for some prove that

()]
1+
dx
d’y

dx” is a constant independent of a and b.

Answer

It is given that,(“‘_a) +H(y=b) =¢

Differentiating both sides with respect to x, we obtain




Class XII Chapter 5 - Continuity and Differentiability

Maths

d

¢ [(J_a)z:|+ :l{c [(-“" -h}: } - ;; (c: )
= 2(x-a): ;i (x—a)+2(y-b)- ;i {81

@

32():—&]-]4»2('_\’—5) 0

lx
- ﬂ _ —(x—a)
dx y=b

&y _d[~(x-a)
Ut de| y—b

)
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-0 260 S8

(y=b)

-(."—b)—(x—a).iz
(v-b)

(Y-b)—(x-ay{‘(x—a)}

y=b .
D) [Usig ()]

) +(.\‘—a):]
(y-b)’

dyY : +(x""):J; [(-”"’)2*(*‘0)2};
l+[de _ [] (y—b)l B (y_b)z

Iy _[c.v—b)"+(er-a)"]"_{<.v—fzf+@;ra)’}

| =Ry (v-2)

dx”

3

=|:()’—h)1] = (1—11))‘

2
C

(v ¥ b) (, i y

= —c, which is constant and is independent of @ and b

Hence, proved.

Question 16:

dy cos’(a+y)

cos y = xcos(a +-"")’with cosa # £l ove thatd =

If
Answer
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It is given that, cos y = xcos(a+y)

. d d

5 a[cosy] = E[xcos((H )]

= —sin y% =cos(a+y)- ;—l\’(x)hr- % [cos(a +y):|

= —sin y% =cos(a+y)+ x-[—sin (a+ ;)] %

= [xsin (a+).')—siny] —Zi =cos(a+y) (1)
3 , cos y

Since cos y = xcos(a+y), x=

ince cos y = xcos(a+y), x w7

Then, equation (1) reduces to

_ SR -sin(a+ y)-siny @ cos(a+y)
cos(a +)') g g (jx J

= cosy-sin(a+y)-siny-cos(a+y)] Sl =cos’ (a+y)

=>sin(a+y- 1)%?— =cos’(a+b)
X

dy cos’ (a+b)
dx  sina

Hence, proved.

Question 17:

dy

, find dx

x=a(cost+1rsint)

If - y=a(sin?—1cost)

-y

and

Answer
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It is given that, x = a(coss +1sins) and y = a(sinf —t cost)

dx d .
. —=a-—(cost+1sinr)
dr dt
. ) d dad ..
=a| —sint +sint-—(t)+1-—(sint
a[ sint +sin dx() dt(sm ]}
=a[-sint +sint+tcost | = at cost
dy

) d .
— =q-—(sins -1cost)
dt dt
= c{cost —{cos!—;—i(l)-i-f-%(cost‘)ﬂ

= a[cost - -{cas:—tsinl}] = aisint

(i)
cdy _\dt) _atsing _

S — o= tant
de (dx) atcost
dt
d'y ddv) d . i
Then, —5 =—| =— [=—(tan#) =sec’ t - —
dx”  dx\dx) dx : lx
2 dx it |
=sec - — =aiCcost = —=
ai cost i dx  atcost
sec 4
= O<fel
at
Question 18:

Iff(»x) :|".|. , show that J (\') exists for all real x, and find it.

Answer
x, ifx=20
lx|: ~x, ifx<0
It is known that, 2id ok

Therefore, when x = 0, 4 (‘)

Flx) =3 )= 6x

and hence, J ( )

o = ()’ =

In this case,

When x < 0, / (”‘.):
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f'(x)=-3x f"(x)=—6x

In this case, - and hence, -

Thus, for'f (1) =M ,j (-’r)exists for all real x and is given by,

[().\', ifx=0

1 "-‘ =
S x) |-6x, ifx<0
3
= .\"‘)= nx"!
Using mathematical induction prove that dx / for all positive integers
n. Answer

d o S %
To prove: P(n): —/—(x” ) =nx"" for all positive integers n
dx

For n=1,

p(l):j\_(.\'): 1=1.x""

~P(n) is true forn=1

Let P(k) is true for some positive integer k.

P(k):<(x")= k'
That is, ( ) d-\‘(’ )

It has to be proved that P(k + 1) is also true.

Consider B (x‘”)z d (x-x“)

dx dx
s O (x)+x- 4 (x*) [By applying product rule]
dx dx : S
=xtl+x-k-x*
=x"+ k"
=(k+1)-x*

= (k+1)- 51
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Thus, P(k + 1) is true whenever P (k) is true.

Therefore, by the principle of mathematical induction, the statement P(n) is true
for every positive integer n.

Hence, proved.

Question 20:

Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation,
obtain the sum formula for cosines.

Answer
sin( A+ B)=sin Acos B +cos Asin B

Differentiating both sides with respect to x, we obtain

dr. d ;i d :
—|sin(A+B)|=—(sin Acos B)+—(cos Asin B
dxl: ( )] t’r( ) d\'( )
d d,. . d
= cos(A+B)-—(A+ B)=cos B-—(sin 4)+sin 4- —(cos B)
dx dx dx
+sin B'i(cos;!)+cos A-—‘i(sin B)
dx ' dx
= cos(A+ B)(—i(! +B)=cosB-cos A ﬁ-+sin A(—sin B)d—B
dx dx dx
+sin B(—sin A)- a4 +¢0s A cos B~d~lg
dx dx
= cos( A+ B): e + E5 =(cos Acos B-sin Asin B)- e + g5
dy  dx dy dx
:.cos( A+ B)=cos Acos B-sin Asin B
f(x) g(x) h(x) f(x) g'(x) h(x)
dy
yp={ f m H = = I m 1
Ox
] b > ' o
If “ ) ‘ , prove that “ 4 ‘

Answer




Class XII Chapter 5 - Continuity and Differentiability Maths

f(x) &l(x) h(x)

y=| 1 m n
a b c
= y=(mc-nb) f(x)-(lc—na)g(x)+(Ib- ma)h(x)

Then, (? = ;i [(mc—nb) f(x)]- Z[(Ic ~na)g(x) |+ I:(Ib ma)h(x) ]

=(mec—nb) f'(x)~(le-na)g'(x)+ (Ib—ma)h ( x)
) £ W)

=| f m n
a b ¢
£(x) &) ()
dy
—=| m n
dx
Thus 9 b &
Question 23:
nd'y dy
GeOs | X 2 l—.\'- s e i e v:O
fy=e .—Is.\sll show that( )dx“ o -
Answer

It is given that, ¥ =¢




Class XII Chapter 5 - Continuity and Differentiability

Maths

Taking logarithm on both the sides, we obtain

log y =acos xloge
log y=acos ' x

Differentiating both sides with respect to x. we obtain

RU—
ydx J1-%
dy __—ay

T V1-x*

By squaring both the sides. we obtain

(#) a7
de) 1-x

Again differentiating both sides with respect to x, we obtain

(&) fo-erteapeg (4] |- 4o

::{ } (- ”r}+(l—x )X2d] ‘:;} az.E_}:@

dx
Y a2y dy
[ J (-2x)+ (l—v ) . 5 =a .2}-.dr
dy d’y dv
= xz+(l— )dx::a.y {z;tO}
:>{ 2 d-"l' dl ~0
" dx

Hence, proved.
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