Class XII Chapter 8 - Application of Integrals Maths

Find the area of the region bounded by the curve y2 =X and thelinesx =1, x=4
and the x-axis.

Answer
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The area of the region bounded by the curve, y2 = X, the lines, x = 1 and x = 4, and
the x-axis is the area ABCD.

Area of ABCD = I‘ ydx
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Class XII Chapter 8 - Application of Integrals Maths

Find the area of the region bounded by y2 = 9x, X = 2, X = 4 and the x-axis in the
first quadrant.

Answer
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The area of the region bounded by the curve, y2 = 9x, X = 2, and x = 4, and the x-
axis is the area ABCD.

Area of ABCD = fydx

= [‘3\[;([):

1l
o

Il
2
=

_(4)15?—(2)'2}
fs-zJﬂ

:(16—4\6) units

2

]

I
)




Class XII Chapter 8 - Application of Integrals Maths

Find the area of the region bounded by x2 =4y, y =2,y =4 and the y-axis in the
first quadrant.

Answer

y'Y

The area of the region bounded by the curve, x2 =4y, y=2,andy = 4, and the y-
axis is the area ABCD.

Area of ABCD = [ xdy
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X .
+—=1
Find the area of the region bounded by the ellipse 16 9
Answer

il 2

The given equation of the ellipse, 1©¢ 9 | can be represented as
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It can be observed that the ellipse is symmetrical about x-axis and y-axis.
~ Area bounded by ellipse = 4 x Area of OAB

Area of OAB = r ydx
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Therefore, area bounded by the ellipse = 4 x 3n = 12n units

Find the area of the region bounded by the ellipse 4 9

Answer
The given equation of the ellipse can be represented as
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It can be observed that the ellipse is symmetrical about x-axis and y-axis.

~ Area bounded by ellipse = 4 x Area OAB
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. Area of OAB = j v

Therefore, area bounded by the ellipse =

N
= I) 3V'I—%cir

[Using (1)]
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Find the area of the region in the first quadrant enclosed by x-axis, line i ‘/;-v"and the

circle

Answer

x*+y' =4

The area of the region bounded by the circle,

the area OAB.
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The point of intersection of the line and the circle in the first quadrant is

(6

. Area OAB = Area AOCA + Area ACB
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Therefore, area enclosed by x-axis, the line™ = ‘ﬁ‘ , and the circle Xty =4 in the first
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Find the area of the smaller part of the circle x2 + y2 = a2 cut off by the
line Answer
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1
v=—r
The area of the smaller part of the circle, x> + y2 = a2, cut off by the line, V2 , is

the area ABCDA.
YA _a

vy

It can be observed that the area ABCD is symmetrical about x-axis.
~ Area ABCD = 2 x Area ABC
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Area of ABC = [,
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Therefore, the area of smaller part of the circle, x2 + y2 = a2, cut off by the line,

B
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The area between x = y2 and x = 4 is divided into two equal parts by the line x = a,

find the value of a.

Answer

The line, x = a, divides the area bounded by the parabola and x = 4 into two

equal parts.

I
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-~ Area UAD = Area AbLD

v

It can be observed that the given area is symmetrical about x-axis.
= Area OED = Area EFCD
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Area QOED = J‘: ydx

= JT Jx dx
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Area of EFCD = f n"';aix

From (1) and (2), we obtain
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Therefore, the value of a is (4)° )

Find the area of the region bounded by the parabola y = X2 and

i |‘| Answer

The area bounded by the parabola, x2 = y,and the Iine,"' B M , can be represented as
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The given area is symmetrical about y-axis.
~ Area OACO = Area ODBO

The point of intersection of parabola, x2 =y, andline, y = x, is A (1,
1). Area of OACO = Area AOAB - Area OBACO

.. Area of AOAB = % xOBx AB = %x Ixl=

lql—

Area of OBACO = | ydx =
= Area of OACO = Area of OAB réa fOBACO
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Find the area bounded by the curve x2 = 4y and the line x = 4y -
2 Answer

The area bounded by the curve, x2 = 4y, and line, x = 4y - 2, is represented by
the shaded area OBAO.
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Let A and B be the points of intersection of the line and parabola.
] \

A are [—L'—J
Coordinates of point 4 .
Coordinates of point B are (2, 1).
We draw AL and BM perpendicular to x-axis.
It can be observed that,
Area OBAO = Area OBCO + Area OACO ... (1)

Then, Area OBCO = Area OMBC - Area OMBO
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Therefore, required area = 6 24 8

Find the area of the region bounded by the curve y2 = 4x and the line x =

3 Answer

The region bounded by the parabola, y2 = 4x, and the line, x = 3, is the area OACO.
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X' 0

y

The area OACO is symmetrical about x-axis.
~ Area of OACO = 2 (Area of OAB)
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Therefore, the required area is S‘E units.

Area lying in the first quadrant and bounded by the circle x> + y2 = 4 and the lines x =
Oand x = 2is
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Answer

The area bounded by the circle and the lines, x = 0 and x = 2, in the first quadrant
is represented as
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. Area OAB = [ yd
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Thus, the correct answer is A.
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Area of the region bounded by the curve y2 = 4x, y-axis and the liney = 3 is
A.
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Answer

The area bounded by the curve, y2 = 4x, y-axis, and y = 3 is represented as
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Thus, the correct answer is B.
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Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola x2 = 4y
Answer

The required area is represented by the shaded area OBCDO.

v

Solving the given equation of circle, ax? + 4y2 = 9, and parabola, X2 = 4y, we obtain the

)

It can be observed that the required area is symmetrical about y-axis.
~ Area OBCDO = 2 x Area OBCO

- 1 ( =
B (V‘Z.;] and D ’ =2,
point of intersection as “/ \

b | —

We draw BM perpendicular to OA.
(v2.0)

Therefore, the coordinates of M are ‘.

Therefore, Area OBCO = Area OMBCO - Area OMBO
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Question 2:

Find the area bounded by curves (x - 1)2 + y2
1 Answer

The area bounded by the curves, (x - 1)2 + y2 =1 and x> + y 2

by the shaded area as

1andx2+y2

1, is represented
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On solving the equations, (x - 1)2 + y2 =1 and x2 +vy 2 - 1, we obtain the point of

wﬁ} /) ?J

2
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intersection as A\ and B\~ < g

It can be observed that the required area is symmetrical about x-axis.
~ Area OBCAO = 2 x Area OCAO

We join AB, which intersects OC at M, such that AM is perpendicular to OC.

(1 3
{ 520
The coordinates of M are \< /.
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= Area OCAQ = Area OMAO+ Area MCAM
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Therefore, required area OBCAO =

Question 3:

Find the area of the region bounded by the curves y = x2 +2,y=x,x=0and x =
3 Answer

The area bounded by the curves, y = x2 +2,y=X,x=0,and x = 3, is represented
by the shaded area OCBAO as
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O D

Ye=3

y¥x=0

Then, Area OCBAO = Area ODBAO - Area ODCO

- f(,\'? +2.)(Ix— I xdx

-l—“*J( 2]

= — units
2

Using integration finds the area of the region bounded by the triangle whose vertices
are (-1, 0), (1, 3) and (3, 2).

Answer

BL and CM are drawn perpendicular to x-axis. It

can be observed in the following figure that,

Area (AACB) = Area (ALBA) + Area (BLMCB) - Area (AMCA) ... (1)
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v

Equation of line segment AB is

2 |
,:AmMALBAy=L;(rHykzg[gww} =
-1

Equation of line segment BC is
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Equation of line segment AC is
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X At
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r=—(x+1
y=o(x+1)
:. Area(AMCA) = L I (x+1)dx= l[‘ +.\} = l|:2+3—l+ l} =4 units
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Therefore, from equation (1), we obtain
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Area (AABC) = (3 + 5 - 4) = 4 units

Using integration find the area of the triangular region whose sides have the equations y

=2x+1,y=3x+1land x =
4. Answer

The equations of sides of the trianglearey = 2x +1,y = 3x + 1, and x = 4.

On solving these equations, we obtain the vertices of triangle as A(0, 1), B(4, 13), and
C (4, 9).

It can be observed that,
Area (AACB) = Area (OLBAQO) -Area (OLCAO)

- f(B.\'+l)d.\'— f('.?.\'+l)¢'1.\'

< 4 3 4
3x° 2x*
= —+x| — + X
2 2
[\ ]}

=(24+4)-(16+4)
=28-20

= 8 units

Smaller area enclosed by the circle x> + y2 =4 andthelinex+y=2is
A.2(n-2)




Class XII Chapter 8 — Application of Integrals

Maths

B.n-2
C.2n-1

D.2 (n +
2) Answer

The smaller area enclosed by the circle, x2 + y2 = 4, and the line, x +y = 2,

is represented by the shaded area ACBA as

A

\‘""

It can be observed that,
Area ACBA = Area OACBO - Area (AOAB)

= I; Ja—x? dx— I’(Q —x)dx

—' 2 4 . " : -‘: .‘I:
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I‘\)I—-f‘
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Thus, the correct answer is B.

Area lying between the curve y2 =4x andy = 2x is

2
3
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c. 4

D. 4
Answer

The area lying between the curve, y2 = 4x and y = 2x, is represented by the
shaded area OBAO as

Y 2
A ye=4x y 2y

X' O
(0, 0)

(1. 0}

v¥

The points of intersection of these curves are O (0, 0) and A (1, 2).

We draw AC perpendicular to x-axis such that the coordinates of C are (1, 0).

~ Area OBAO = Area (AOCA) - Area (OCABO)
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Thus, the correct answer is B.
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Find the area under the given curves and given lines:
(i) y = x%, x = 1, x = 2 and x-axis

(i) y=x4,x=1,x=5andx—
axis Answer

i.  The required area is represented by the shaded area ADCBA as

Yk ok k

X ol sl [P X
o I

Area ADCBA = ["yd

-

f xdx

r &g
1}
-

2
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ii.  The required area is represented by the shaded area ADCBA as
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Yah o
i
1 B ik Z . -
X ol B X
v Ar_: | Fv=35

Area ADCBA = I.x*dr

—%

(5) 1

5 5
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=(5
(5)' -1
:()'25—l
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=0624.8 units

Find the area between the curvesy = xandy = x2

Answer

The required area is represented by the shaded area OBAO as
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B
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X Q

Y.V

The points of intersection of the curves, y = xandy = x2, is A (1,

1). We draw AC perpendicular to x-axis.
~ Area (OBAO) = Area (AOCA) - Area (OCABO) ... (1)

Find the area of the region lying in the first quadrant and bounded by y = 4x2, x=0,vy

=landy=4
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Answer

The area in the first quadrant bounded by y = 4x2, x=0,y=1,andy =4
is represented by the shaded area ABCDA as

= D I i
X' 0 X
y'¥

. Area ABCD = fx de

_ fLﬁ

- 4

[ -
=— units
3

v=|x+3 |+ 3
Sketch the graph of y=pet |and evaluate 'U }[

Answer
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The given equation is

y=|x+3|

The corresponding values of x and y are given in the following table.

x|-6|-5]|-4]-3

-110

Yy 3 2 1 0

On plotting these points, we obtain the graph of -

= h y: 3' as follows.

R A O
+ + + +

Yy

It is known that,

) 3)e == (x 3

- " (
x° X
=—|—+3x| +
2
- -6

(x+3)<0for —6<x=-3and (x+3)=0 for —3<x<0

- _r:(.x +3 )dx
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Find the area bounded by the curve y = sin x between x = 0 and x =
2n Answer

The graph of y = sin x can be drawn as
Y

-

X' O

l-Jl:i

A
Pz@
tJ

)
A |

~Required area = Area OABO + Area BCDB

o ‘[‘sin xdx+ ! fﬂsin xdx

=[-cosx], + '[—Cos \]“i

=[—c057t+cos()]+ —~COS2M+COST

=1+1+|(-1-1)
=2+|-2|
=2+2 =4 units

Find the area enclosed between the parabola y2 = 4ax and the liney = mx

Answer

The area enclosed between the parabola, y2 = 4ax, and the line, y = mx, is
represented by the shaded area OABO as




The points of intersection of both the curves are (0, 0) and

R

m m

(4_“&

~ Area OABO = Area

] . We draw AC perpendicular to x-axis.

OCABO - Area (AOCA)

o da
= | 2Jeax de - ‘["“" mx dx
Al ]

du

",

3 1
_32a° 8a’
3mtom’
8a” .
= units
a3

Class XII Chapter 8 — Application of Integrals Maths
Yy . il = dax
7V da da
B : ( mt m ’
0,0 :

% H .
"o C 'x

Y'"
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Find the area enclosed by the parabola 4y = 3x2 and the line 2y = 3x +
12 Answer

The area enclosed between the parabola, 4y = 3x2, and the lineg, 2y = 3x + 12,
is represented by the shaded area OBAO as

N

12

The points of intersection of the given curves are A (-2, 3) and (4,

12). We draw AC and BD perpendicular to x-axis.
~ Area OBAO = Area CDBA - (Area ODBO + Area OACO)
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| 1
=—7—[24+48—6+24]—-3[64+8]

=27 units

Find the area of the smaller region bounded by the ellipse 9 4 and the line

The area of the smaller region bounded by the ellipse, 9 4 , and the line,

X y
—=—=1
. , is represented by the shaded region BCAB as
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X )
— 4 =1
Find the area of the smaller region bounded by the ellipse ¢ b and the line
£ + I =1
a b
Answer
.\" " .\" -

The area of the smaller region bounded by the ellipse, ¢ b* , and the line,
x y

— e = |
a o , is represented by the shaded region BCAB as

‘ Y

A

- 1 ’
B
la, )
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o =

- Area BCAB = Arq3,(OBCAO) - Area (OBAO)
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% ¢

_ [bfi-E ae- [o{1-% |
Z V a b L |(

a

Find the area of the region enclosed by the parabola x2 =y, theliney = x + 2 and
X-axis
Answer

The area of the region enclosed by the parabola, x2 =y, theline, y = x + 2, and x-
axis is represented by the shaded region OABCO as
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b ==

.l..'.L.-.l

L

—

[ 4

The point of intersection of the parabola, x2 =y, and theline,y =x+ 2,is A (-1, 1).
~ Area OABCO = Area (BCA) + Area COAC

- -[I (x+2)dx+ [Il X dx

- -1 370
xX° X
=|—+2x| +|—
2 3
L J-2 L -1

S .
= — units
6
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Using the method of integration find the area bounded by the curve 'r|+l-" =1

[Hint: the required region is bounded by linesx+y=1,x-y=1,-x+y=1and - x
-y = 11]
Answer

The area bounded by the curve, "‘|+l" - , is represented by the shaded region

ADCB as

<
>

The curve intersects the axes at points A (0, 1), B (1, 0), C (0, -1), and D (-1, 0). It

can be observed that the given curve is symmetrical about x-axis and y-axis.
~ Area ADCB = 4 x Area OBAO

=2 units
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T Y. p =%l
Find the area bounded by curves ((xp):y 2 and y =|x;

Answer

{(‘ x,y):yzx*and y= |x“|

The area bounded by the curves, 1", is represented by

the shaded region as

[ ¥

Y :
4 F= ¥

[}
L

P o e
\
P

v¥

It can be observed that the required area is symmetrical about y-axis.

Required area = 2[Arca (OCAO)— Area (OCADO)]

i r' xdx - _C.\'" cl\':|
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Il
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) | fa—
-~
=
=
.
o=
-

Using the method of integration find the area of the triangle ABC, coordinates of
whose vertices are A (2, 0), B (4, 5) and C (6, 3)
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Answer
The vertices of AABC are A (2, 0), B (4, 5), and C (6, 3).
LY

D06, 3)

o W K -

>y

V Y

Equation of line segment AB is

y=-x+9 )
Equation of line segment CA is

0-3
=3 = x=6
T 2—6( )
—4y+12=-3x+18

4y =3x-6
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Area (AABC) = Area (ABLA) + Area (BLMCB) - Area (ACMA)

= f%(r—2)dx+ J:'(—.\'+9)(1x— _[‘i(,r—2)d.\‘
> 24 - 6 x 2 &
=—5—I:7—\:»~-—2.\' +lﬁ%+9x} —-<['\——2x}
22777 2 4|2 :

4

| L

=%[8—8—2+4]+[—|8+54+8—36]—%[I8—I2—2~4]

=5+8-

=13-6
=7 units

Question 14:

Using the method of integration find the area of the region bounded by

lines: 2x +y=4,3x -2y =6andx-3y+5=0

Answer

The given equations of lines
are2x +y=4..(1)

3x -2y =6..(2)
And, x -3y +5=0..(3)

Y 3x-2y=90
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The area of the region bounded by the lines is the area of AABC. AL and CM are

the perpendiculars on x-axis.
Area (AABC) = Area (ALMCA) - Area (ALB) - Area (CMB)

r(,\‘ts\w“_ (:(4_2.\’)(1.‘__‘[(3.\:6 2
. > ) = . S
4

/

2 4 ~_2
- l{\'_ + 5.\} - |:4.\' - .\'3]' - l{)x - ().\}
3| 2 v 2] 2

:é{8+20—%—5}—w—4—4+I}~%P4—24—6+Iﬂ

-

y

| 45 I
(33030
=22 g

2
:I_’_4: 15-8. .1 units

2 2 2

x,p):y7 <4x,4x° +4y° <9}
Find the area of the region {(\ )iy’ S4x4x +4) J

Answer

X, y):y’ S4x,4x’ +4y°
The area bounded by the curves, {(\ ") > g )

<9!
), is represented as
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Class XII

A

5

T,

 (3:42) -
2+C"

Ar? + 4y :ul,* (_1_ n)
X f.Ol‘g'g,"'Hv‘l ; -
LT *~|| sl T 4 08

P (k-]

xE s Ly i

4

e s

V‘.-"

The points of intersection of both the curves

| ] =
(_ \/—] and [;‘_‘;2)
are = /. The required area is given by OABCO.

It can be observed that area OABCO is symmetrical about x-axis.
~ Area OABCO = 2 x Area OBC

Area OBCO = Area OMC + Area MBC
|
I 24 x dx +I VY

I o 3 >
. L: 2\1{\. e+ j‘lz %V)(B)- —(2.\‘)_ dx

N &

Area bounded by the curvey = x3, the x-axis and the ordinates x = -2 and x = 1 is

A -9
B
B. 4
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15
c. 4
17
D. 4
Answer
A Ya o
_'4‘=J;-1
gl 1}
_ C 0 -
X' A X
-2, -8)D
L J ",-,‘F Y
x=-2 x=1

Required area = ‘r’_vdr

= r? x'dx

\ 15 .
4 | =— units
4

4

Thus, the correct answer is B.

The area bounded by the curve r=

is given by

[Hint:y=x2ifx>0andy=—xzifx<O]

"M, X-axis and the ordinates x = -land x =1
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A. O
1
B. 3
2
c.3
4
D. 3
Answer
li“’n '
J;_=.\'!.1‘
Bl 1)

. clO &
X' A E
@ (-1, -1 D %

]
Y.F ¥
r=—1 ¥ =1

Required area = .[| vl

= flx]x}dx

f 1Y 1
= - ——J—l——
% 3.! 3
2
= — units
3

Thus, the correct answer is C.
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The area of the circle x> + y2 = 16 exterior to the parabola y2 = 6Xx is

;(4n~\/§)

D. 3
Answer

The given equations
are x2 + y2 =16 .. (1)

y© =6x..(2)

Area bounded by the circle and parabola




Class XII Chapter 8 — Application of Integrals

Maths

=2[ Area(OADO) + Area(ADBA) |

= _fm&\% ijlﬁ—xzdr]

-3

Il
(=]

4
+2B\Jlb 3 +]—(q|n 'ﬂ

i

{xﬂ +2[3-3- J16—4 —8sin™ [lﬂ
1] 2 2

4“/_( }+’«’{4n iz - 8}

=26 %

W | b

=M+87r—4\/§—%n
= 4ﬁ+6n—3\-‘§—2n]
3L
4r
= 3_J§+4?t]
= 4—47r+-\5] units
3L
Area of circle = n (r)2

= n (4)°
= 16n units

.. Required area = 16m —g[‘m - \/’3—]
=§-[4x3n—4n— \ﬁ]
= %(Sn—\ﬁ) units

Thus, the correct answer is C.
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The area bounded by the y-axis, y = cos x and y = sin x when
X B4 e
A. “(‘/: ])

B. V[E—I

C. \/§+|
p. V2
Answer

The given equations
arey = cos X ... (1)

And, y =sin x ... (2)

v,
V=Ccos XY = sinx
AL 5
L )
B
{E. 1 ’
=
X gk X
S 0 cE
Y'y

Required area = Area (ABLA) + area (OBLO)

= f, xdy + I.f: xdy

)

v

|
- fl cos ' ydy + I*fsin ' xdy
- )

Integrating by parts, we obtain
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1

[rsin“' x+y1-x2 ]

LU

[yeos m}'

v—‘n_

oo (i T} o (-
“4;\/%+$+%+ﬁ_l
:\%-1
=2 —1 units

Thus, the correct answer is B.

Put 2.\*=t:dt=(—12i

When x = é t =3 andwhen x = l =1
2 2

1
= | 3 2 2
=_““-2\/;dx+1_[ JBY =) di
1
3 P 3
g2 [ I1F 9—t3+28in"(£)
3| 4|2 2 3/,
2

e )

335 ;HOJ’W (|)}—{; 8+Zsin"(;)}]

V2o 1for 9
= -2 - ~sin™
T o M2 ,sin

(
V2 9 2 9 [1_)
3

ro |

et
|
/—/ﬁ
B | =
O
—
S—
+
N | o
e
=
L
AR
hE—
Ny
)

sin
3 16 4 8
9% 9 . _.(l) 2
=-—-—=—¢in +

16 8
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2% —sin { ) —=sin" | = [+—
16 8 \3/) 12 )

(on 9 . (1) 2)| 9% 9 . (1) 1
— ~ + — ”_
\ N~/ y, 8 4 k3/ 3\"2

Therefore, the required area is *
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