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Additional Exercises 

Question 12.11:  

Answer the following questions, which help you understand the difference between 

Thomson’s model and Rutherford’s model better.  

(a) Is the average angle of deflection of α-particles by a thin gold foil predicted by 

Thomson’s model much less, about the same, or much greater than that predicted by 

Rutherford’s model?  

(b) Is the probability of backward scattering (i.e., scattering of α-particles at angles 

greater than 90°) predicted by Thomson’s model much less, about the same, or much 

greater than that predicted by Rutherford’s model?  

(c) Keeping other factors fixed, it is found experimentally that for small thickness t, 

the number of α-particles scattered at moderate angles is proportional to t. What clue 

does this linear dependence on t provide?  

(d) In which model is it completely wrong to ignore multiple scattering for the 

calculation of average angle of scattering of α-particles by a thin foil?  

Answer  

(a) about the same  

The average angle of deflection of α-particles by a thin gold foil predicted by Thomson’s 

model is about the same size as predicted by Rutherford’s model. This is because the 

average angle was taken in both models.  

(b) much less  

The probability of scattering of α-particles at angles greater than 90° predicted by 

Thomson’s model is much less than that predicted by Rutherford’s model.   

(c) Scattering is mainly due to single collisions. The chances of a single collision 

increases linearly with the number of target atoms. Since the number of target atoms 

increase with an increase in thickness, the collision probability depends linearly on the 

thickness of the target.  

(d) Thomson’s model  

It is wrong to ignore multiple scattering in Thomson’s model for the calculation of average 

angle of scattering of α−particles by a thin foil. This is because a single collision causes 
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very little deflection in this model. Hence, the observed average scattering angle can be 

explained only by considering multiple scattering.   

  

Question 12.12:  

The gravitational attraction between electron and proton in a hydrogen atom is weaker 

than the coulomb attraction by a factor of about 10−40. An alternative way of looking at 

this fact is to estimate the radius of the first Bohr orbit of a hydrogen atom if the electron 

and proton were bound by gravitational attraction. You will find the answer interesting.  

Answer  

Radius of the first Bohr orbit is given by the relation,  

  

Where,   

∈0 = Permittivity of free space  

h = Planck’s constant = 6.63 × 10−34 Js  

me = Mass of an electron = 9.1 × 10−31 kg  

e = Charge of an electron = 1.9 × 10−19 C  

mp = Mass of a proton = 1.67 × 10−27 kg  

r = Distance between the electron and the proton   

Coulomb attraction between an electron and a proton is given as:  

  

Gravitational force of attraction between an electron and a proton is given as:  

  

Where,   
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G = Gravitational constant = 6.67 × 10−11 N m2/kg2  

If the electrostatic (Coulomb) force and the gravitational force between an electron and 

a proton are equal, then we can write:  

∴FG = FC  

  

Putting the value of equation (4) in equation (1), we get:  

  

It is known that the universe is 156 billion light years wide or 1.5 × 1027 m wide. Hence, 

we can conclude that the radius of the first Bohr orbit is much greater than the estimated 

size of the whole universe.   

  

 

Question 12.13:  

Obtain an expression for the frequency of radiation emitted when a hydrogen atom 

deexcites from level n to level (n−1). For large n, show that this frequency equals the 

classical frequency of revolution of the electron in the orbit.  

 

Answer  

It is given that a hydrogen atom de-excites from an upper level (n) to a lower level (n−1).  

We have the relation for energy (E1) of radiation at level n as:  
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Now, the relation for energy (E2) of radiation at level (n − 1) is given as:  

  

Energy (E) released as a result of de-excitation:  

E = E2−E1 hν = E2 − E1 … (iii)  

Where,  

ν = Frequency of radiation emitted  

Putting values from equations (i) and (ii) in equation (iii), we get:  

  

  

For large  n,  we can write   
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Classical relation of frequency of revolution of an electron is given as:  

  

Where,   

Velocity of the electron in the nth orbit is given as:   

v =   

And, radius of the nth orbit is given as:   

r =   

Putting the values of equations (vi) and (vii) in equation (v), we get:  

  

Hence, the frequency of radiation emitted by the hydrogen atom is equal to its classical 

orbital frequency.   

  

Question 12.14:  

Classically, an electron can be in any orbit around the nucleus of an atom. Then what 

determines the typical atomic size? Why is an atom not, say, thousand times bigger than 

its typical size? The question had greatly puzzled Bohr before he arrived at his famous 

model of the atom that you have learnt in the text. To simulate what he might well have 

done before his discovery, let us play as follows with the basic constants of nature and 

see if we can get a quantity with the dimensions of length that is roughly equal to the 

known size of an atom (~ 10−10 m).  

(a) Construct a quantity with the dimensions of length from the fundamental 

constants e, me, and c. Determine its numerical value.  

(b) You will find that the length obtained in (a) is many orders of magnitude smaller 

than the atomic dimensions. Further, it involves c. But energies of atoms are mostly in 
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non-relativistic domain where c is not expected to play any role. This is what may have 

suggested Bohr to discard c and look for ‘something else’ to get the right atomic size. 

Now, the Planck’s constant h had already made its appearance elsewhere. Bohr’s great 

insight lay in recognising that h, me, and e will yield the right atomic size. Construct a 

quantity with the dimension of length from h, me, and e and confirm that its numerical 

value has indeed the correct order of magnitude.  

Answer  

(a) Charge on an electron, e = 1.6 × 10−19 C  

Mass of an electron, me = 9.1 × 10−31 kg  

Speed of light, c = 3 ×108 m/s  

Let us take a quantity involving the given quantities as   

Where,  

 

0 = Permittivity of free space  

 

And,   

 

The numerical value of the taken quantity will be:  

  

Hence, the numerical value of the taken quantity is much smaller than the typical size of 

an atom.  

(b) Charge on an electron, e = 1.6 × 10−19 C  

Mass of an electron, me = 9.1 × 10−31 kg  

Planck’s constant, h = 6.63 ×10−34 Js  

Let us take a quantity involving the given quantities as   

Where,  
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0 = Permittivity of free space  

And,   

The numerical value of the taken quantity will be:  

  

Hence, the value of the quantity taken is of the order of the atomic size.   

  

Question 12.15:  

The total energy of an electron in the first excited state of the hydrogen atom is about 

−3.4 eV.  

(a) What is the kinetic energy of the electron in this state?  

(b) What is the potential energy of the electron in this state?  

(c) Which of the answers above would change if the choice of the zero of potential 

energy is changed?  

Answer  

(a) Total energy of the electron, E = −3.4 eV  

Kinetic energy of the electron is equal to the negative of the total energy.   

K = −E  

= − (− 3.4) = +3.4 eV  

Hence, the kinetic energy of the electron in the given state is +3.4 eV.  

(b) Potential energy (U) of the electron is equal to the negative of twice of its kinetic 

energy.  

U = −2 K  

= − 2 × 3.4 = − 6.8 eV  
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Hence, the potential energy of the electron in the given state is − 6.8 eV.  

(c) The potential energy of a system depends on the reference point taken. Here, the 

potential energy of the reference point is taken as zero. If the reference point is 

changed, then the value of the potential energy of the system also changes. Since 

total energy is the sum of kinetic and potential energies, total energy of the system 

will also change.   

  

Question 12.16:  

If Bohr’s quantisation postulate (angular momentum = nh/2π) is a basic law of nature, it 

should be equally valid for the case of planetary motion also. Why then do we never 

speak of quantisation of orbits of planets around the sun?  

Answer  

We never speak of quantization of orbits of planets around the Sun because the angular 

momentum associated with planetary motion is largely relative to the value of Planck’s 

constant (h). The angular momentum of the Earth in its orbit is of the order of 1070h. This 

leads to a very high value of quantum levels n of the order of 1070. For large values of n, 

successive energies and angular momenta are relatively very small. Hence, the quantum 

levels for planetary motion are considered continuous.   

  

Question 12.17:  

Obtain the first Bohr’s radius and the ground state energy of a muonic hydrogen atom 

[i.e., an atom in which a negatively charged muon (µ−) of mass about 207me orbits 

around a proton].  

Answer  

Mass of a negatively charged muon,   

According to Bohr’s model,  

Bohr radius,   

And, energy of a ground state electronic hydrogen atom,   
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Let rµ be the radius of muonic hydrogen atom.  

At equilibrium, we can write the relation as:  

  

Hence, the value of the first Bohr radius of a muonic hydrogen atom is   

2.56 × 10−13 m.  

We have,   

Ee= − 13.6 eV  

Take the ratio of these energies as:  

  

Hence, the ground state energy of a muonic hydrogen atom is −2.81 keV.  

  

  

We have the value of the first Bohr orbit,  


