SUPPLEMENTARY MATERIAL

CHAPTER 7

7.6.3 $\int(p x+q) \sqrt{a x^{2}+b x+c} d x$.

We choose constants A and B such that

$$
\begin{array}{rlrl}
p x+q & = & \mathrm{A}\left[\frac{d}{d x}\left(a x^{2}+b x+c\right)\right]+\mathrm{B} \\
& =\mathrm{A}(2 a x+b)+\mathrm{B}
\end{array}
$$

Comparing the coefficients of x and the constant terms on both sides, we get

$$
2 a \mathrm{~A}=p \text { and } \mathrm{A} b+\mathrm{B}=q
$$

Solving these equations, the values of A and B are obtained. Thus, the integral reduces to

$$
\begin{gathered}
\mathrm{A} \int(2 a x+b) \sqrt{a x^{2}+b x+c} d x+\mathrm{B} \int \sqrt{a x^{2}+b x+c} d x \\
=\quad \mathrm{AI}_{1}+\mathrm{BI}_{2} \\
\text { where } \\
\mathrm{I}_{1}=\int(2 a x+b) \sqrt{a x^{2}+b x+c} d x
\end{gathered}
$$

Put $a x^{2}+b x+c=t$, then $(2 a x+b) \mathrm{d} x=\mathrm{d} t$
So

$$
\mathrm{I}_{1}=\frac{2}{3}\left(a x^{2}+b x+c\right)^{\frac{3}{2}}+\mathrm{C}_{1}
$$

Similarly, $\quad \mathrm{I}_{2}=\int \sqrt{a x^{2}+b x+c} d x$
is found, using the integral formulae discussed in [7.6.2, Page 328 of the textbook].
Thus $\int(p x+q) \sqrt{a x^{2}+b x+c} d x$ is finally worked out.

Example 25 Find $\int x \sqrt{1+x-x^{2}} d x$
Solution Following the procedure as indicated above, we write

$$
\begin{aligned}
x & =\mathrm{A}\left[\frac{d}{d x}\left(1+x-x^{2}\right)\right]+\mathrm{B} \\
& =\mathrm{A}(1-2 x)+\mathrm{B}
\end{aligned}
$$

Equating the coefficients of x and constant terms on both sides,
We get $-2 \mathrm{~A}=1$ and $\mathrm{A}+\mathrm{B}=0$
Solving these equations, we get $A=-\frac{1}{2}$ and $B=\frac{1}{2}$. Thus the integral reduces to

$$
\begin{gather*}
\int x \sqrt{1+x-x^{2}} d x=-\frac{1}{2} \int(1-2 x) \sqrt{1+x-x^{2}} d x+\frac{1}{2} \int \sqrt{1+x-x^{2}} d x \\
=-\frac{1}{2} \mathrm{I}_{1}+\frac{1}{2} \mathrm{I}_{2} \tag{1}
\end{gather*}
$$

Consider

$$
I_{1}=\int(1-2 x) \sqrt{1+x-x^{2}} d x
$$

Put $1+x-x^{2}=t$, then $(1-2 x) d x=d t$

Thus $\quad \mathrm{I}_{1}=\int(1-2 x) \sqrt{1+x-x^{2}} d x=\int t^{\frac{1}{2}} d t=\frac{2}{3} t^{\frac{3}{2}}+\mathrm{C}_{1}$

$$
=\frac{2}{3}\left(1+x-x^{2}\right)^{\frac{3}{2}}+\mathrm{C}_{1}, \text { where } \mathrm{C}_{1} \text { is some constant. }
$$

Further, consider

$$
\mathrm{I}_{2}=\int \sqrt{1+x-x^{2}} d x=\int \sqrt{\frac{5}{4}-\left(x-\frac{1}{2}\right)^{2} d x}
$$

Put $x-\frac{1}{2}=t$. Then $d x=d t$

Therefore,

$$
\begin{aligned}
\mathrm{I}_{2} & =\int \sqrt{\left(\frac{\sqrt{5}}{2}\right)^{2}-t^{2}} d t \\
& =\frac{1}{2} t \sqrt{\frac{5}{4}-t^{2}}+\frac{1}{2} \cdot \frac{5}{4} \sin ^{-1} \frac{2 t}{\sqrt{5}}+\mathrm{C}_{2} \\
& =\frac{1}{2} \frac{(2 x-1)}{2} \sqrt{\frac{5}{4}-\left(x-\frac{1}{2}\right)^{2}}+\frac{5}{8} \sin ^{-1}\left(\frac{2 x-1}{\sqrt{5}}\right)+C_{2} \\
& =\frac{1}{4}(2 x-1) \sqrt{1+x-x^{2}}+\frac{5}{8} \sin ^{-1}\left(\frac{2 x-1}{\sqrt{5}}\right)+C_{2}
\end{aligned}
$$

where C_{2} is some constant.
Putting values of I_{1} and I_{2} in (1), we get

$$
\begin{aligned}
\int x \sqrt{1+x}-x^{2} d x=-\frac{1}{3}\left(1+x-x^{2}\right)^{\frac{3}{2}} & +\frac{1}{8}(2 x-1) \sqrt{1+x-x^{2}} \\
& +\frac{5}{16} \sin ^{-1}\left(\frac{2 x-1}{\sqrt{5}}\right)+C
\end{aligned}
$$

where

$$
\mathrm{C}=-\frac{\mathrm{C}_{1}+\mathrm{C}_{2}}{2} \text { is another arbitrary constant. }
$$

Insert the following exercises at the end of EXERCISE 7.7 as follows:

12. $x \sqrt{x+x^{2}}$
13. $(x+1) \sqrt{2 x^{2}+3}$
14. $(x+3) \sqrt{3-4 x-x^{2}}$

Answers

12. $\frac{1}{3}\left(x^{2}+x\right)^{\frac{3}{2}}-\frac{(2 x+1) \sqrt{x^{2}+x}}{8}+\frac{1}{16} \log \left|x+\frac{1}{2}+\sqrt{x^{2}+x}\right|+\mathrm{C}$
13. $\frac{1}{6}\left(2 x^{2}+3\right)^{\frac{3}{2}}+\frac{x}{2} \sqrt{2 x^{2}+3}+\frac{3 \sqrt{2}}{4} \log \left|x+\sqrt{x^{2}+\frac{3}{2}}\right|+\mathrm{C}$
14. $-\frac{1}{3}\left(3-4 x-x^{2}\right)^{\frac{3}{2}}+\frac{7}{2} \sin ^{-1}\left(\frac{x+2}{\sqrt{7}}\right)+\frac{(x+2) \sqrt{3-4 x-x^{2}}}{2}+\mathrm{C}$

CHAPTER 10

10.7 Scalar Triple Product

Let \vec{a}, \vec{b} and \vec{c} be any three vectors. The scalar product of \vec{a} and $(\vec{b} \times \vec{c})$, i.e., $\vec{a} \cdot(\vec{b} \times \vec{c})$ is called the scalar triple product of \vec{a}, \vec{b} and \vec{c} in this order and is denoted by $[\vec{a}, \vec{b}, \vec{c}]$ (or $[\vec{a} \vec{b} \vec{c}]$). We thus have

$$
[\vec{a}, \vec{b}, \vec{c}]=\vec{a} \cdot(\vec{b} \times \vec{c})
$$

Observations

1. Since $(\vec{b} \times \vec{c})$ is a vector, $\vec{a} \cdot(\vec{b} \times \vec{c})$ is a scalar quantity, i.e. $[\vec{a}, \vec{b}, \vec{c}]$ is a scalar quantity.
2. Geometrically, the magnitude of the scalar triple product is the volume of a parallelopiped formed by adjacent sides given by the three

Fig. 10.28
vectors \vec{a}, \vec{b} and \vec{c} (Fig. 10.28). Indeed, the area of the parallelogram forming the base of the parallelopiped is $|\vec{b} \times \vec{c}|$. The height is the projection of \vec{a} along the normal to the plane containing \vec{b} and \vec{c} which is the magnitude of the component of \vec{a} in the direction of $\vec{b} \times \vec{c}$ i.e., $\frac{|\vec{a} \cdot(\vec{b} \times \vec{c})|}{|(\vec{b} \times \vec{c})|}$. So the required volume of the parallelopiped is $\frac{|\vec{a} \cdot(\vec{b} \times \vec{c})|}{|(\vec{b} \times \vec{c})|}|\vec{b} \times \vec{c}|=|\vec{a} \cdot(\vec{b} \times \vec{c})|$,
3. If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$, then

$$
\begin{gathered}
\vec{b} \times \vec{c}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \\
=\left(b_{2} c_{3}-b_{3} c_{2}\right) \hat{i}+\left(b_{3} c_{1}-b_{1} c_{3}\right) \hat{j}+\left(b_{1} c_{2}-b_{2} c_{1}\right) \hat{k}
\end{gathered}
$$

and so

$$
\begin{aligned}
& \vec{a} \cdot(\vec{b} \times \vec{c})=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)+a_{2}\left(b_{3} c_{1}-b_{1} c_{3}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right) \\
& =\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
\end{aligned}
$$

4. If \vec{a}, \vec{b} and \vec{c} be any three vectors, then
$[\vec{a}, \vec{b}, \vec{c}]=[\vec{b}, \vec{c}, \vec{a}]=[\vec{c}, \vec{a}, \vec{b}]$
(cyclic permutation of three vectors does not change the value of the scalar triple product).
Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}_{3} \hat{k}$.

Then, just by observation above, we have
$[\vec{a}, \vec{b}, \vec{c}]=\left|\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
$=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)+a_{2}\left(b_{3} c_{1}-b_{1} c_{3}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)$
$=b_{1}\left(a_{3} c_{2}-a_{2} c_{3}\right)+b_{2}\left(a_{1} c_{3}-a_{3} c_{1}\right)+b_{3}\left(a_{2} c_{1}-a_{1} c_{2}\right)$
$=\left|\begin{array}{lll}b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \\ a_{1} & a_{2} & a_{3}\end{array}\right|$
$=[\vec{b}, \vec{c}, \vec{a}]$
Similarly, the reader may verify that
$=[\vec{a}, \vec{b}, \vec{c}]=[\vec{a}, \vec{b}, \vec{c}]$

Hence

$$
[\vec{a}, \vec{b}, \vec{c}]=[\vec{b}, \vec{c}, \vec{a}]=[\vec{c}, \vec{a}, \vec{b}]
$$

5. In scalar triple product $\vec{a} \cdot(\vec{b} \times \vec{c})$, the dot and cross can be interchanged. Indeed,

$$
\vec{a} \cdot(\vec{b} \times \vec{c})=[\vec{a}, \vec{b}, \vec{c}]=[\vec{b}, \vec{c}, \vec{a}]=[\vec{c}, \vec{a}, \vec{b}]=\vec{c} \cdot(\vec{a} \times \vec{b})=(\vec{a} \times \vec{b}) \cdot \vec{c}
$$

6. $=[\vec{a}, \vec{b}, \vec{c}]=-[\vec{a}, \vec{c}, \vec{b}]$. Indeed
$=[\vec{a}, \vec{b}, \vec{c}]=\vec{a} \cdot(\vec{b} \times \vec{c})$
$=\vec{a} \cdot(-\vec{c} \times \vec{b})$
$=-(\vec{a} \cdot(\vec{c} \times \vec{b}))$
$=-[\vec{a}, \vec{c}, \vec{b}]$
7. $[\vec{a}, \vec{a}, \vec{b}]=0$ Indeed

$$
\begin{aligned}
{[\vec{a}, \vec{a}, \vec{b}] } & =[\vec{a}, \vec{b}, \vec{a}] \\
& =[\vec{b}, \vec{a}, \vec{a}] \\
& =\vec{b} \cdot(\vec{a} \times \vec{a}) \\
& =\vec{b} \cdot \overrightarrow{0}=0 . \quad(\text { as } \vec{a} \times \vec{a}=\overrightarrow{0})
\end{aligned}
$$

Note: The result in 7 above is true irrespective of the position of two equal vectors.

10.7.1 Coplanarity of Three Vectors

Theorem 1 Three vectors \vec{a}, \vec{b} and \vec{c} are coplanar if and only if $\vec{a} \cdot(\vec{b} \times \vec{c})=0$.
Proof Suppose first that the vectors \vec{a}, \vec{b} and \vec{c} are coplanar.
If \vec{b} and \vec{c} are parallel vectors, then, $\vec{b} \times \vec{c}=\overrightarrow{0}$ and so $\vec{a} \cdot(\vec{b} \times \vec{c})=0$.
If \vec{b} and \vec{c} are not parallel then, since \vec{a}, \vec{b} and \vec{c} are coplanar, $\vec{b} \times \vec{c}$ is perpendicular to \vec{a}.

So $\vec{a} \cdot(\vec{b} \times \vec{c})=0$.
Conversely, suppose that $\vec{a} \cdot(\vec{b} \times \vec{c})=0$. If \vec{a} and $\vec{b} \times \vec{c}$ are both non-zero, then we conclude that \vec{a} and $\vec{b} \times \vec{c}$ are perpendicular vectors. But $\vec{b} \times \vec{c}$ is perpendicular to both \vec{b} and \vec{c}. Therefore, \vec{a} and \vec{b} and \vec{c} must lie in the plane, i.e. they are coplanar. If $\vec{a}=0$, then \vec{a} is coplanar with any two vectors, in particular with \vec{b} and \vec{c}. If $(\vec{b} \times \vec{c})=0$, then \vec{b} and \vec{c} are parallel vectors and so, \vec{a}, \vec{b} and \vec{c} are coplanar since any two vectors always lie in a plane determined by them and a vector which is parallel to any one of it also lies in that plane.
Note: Coplanarity of four points can be discussed using coplanarity of three vectors. Indeed, the four points A, B, C and D are coplanar if the vectors $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A D}$ are coplanar.

Example 26 Find $\vec{a} \cdot(\vec{b} \times \vec{c})$, if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=\hat{i}+2 j+k$ and $\vec{c}=3 \hat{i}+\hat{j}+2 \hat{k}$.
Solution We have $\vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{ccc}2 & 1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & 2\end{array}\right|=-10$.
Example 27 Show that the vectors
$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+3 j-4 \hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}+5 \hat{k}$ are coplanar.
Solution We have $\vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{crc}1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5\end{array}\right|=0$.
Hence, in view of Theorem $1, \vec{a}, \vec{b}$ and \vec{c} are coplanar vectors.
Example 28 Find λ if the vectors
$\vec{a}=\hat{i}+3 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{c}=\lambda \hat{i}+7 \hat{j}+3 \hat{k}$ are coplanar.
Solution Since \vec{a}, \vec{b} and \vec{c} are coplanar vectors, we have $[\vec{a}, \vec{b}, \vec{c}]=0$, i.e.,

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & 3 & 1 \\
2 & -1 & -1 \\
\lambda & 7 & 3
\end{array}\right|=0 . \\
& \Rightarrow \quad 1(-3+7)-3(6+\lambda)+1(14+\lambda)=0 \\
& \Rightarrow \quad \lambda=0 .
\end{aligned}
$$

Example 29 Show that the four points A, B, C and D with position vectors $4 \hat{i}+5 \hat{j}+\hat{k},-(\hat{j}+\hat{k}), 3 \hat{i}+9 \hat{j}+4 \hat{k}$ and $4(-\hat{i}+\hat{j}+\hat{k})$, respectively are coplanar.

Solution We know that the four points A, B, C and D are coplanar if the three vectors $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{AD}}$ are coplanar, i.e., if

$$
[\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}} \text { and } \overrightarrow{\mathrm{AD}}]=0
$$

Now $\quad \overrightarrow{\mathrm{AB}}=-(\hat{j}+\hat{k})-(4 \hat{i}+5 \hat{j}+\hat{k})=-4 \hat{i}-6 \hat{j}-2 \hat{k})$

$$
\overrightarrow{\mathrm{AC}}=(3 \hat{i}+9 \hat{j}+4 \hat{k})-(4 \hat{i}+5 \hat{j}+\hat{k})=-\hat{i}+4 \hat{j}+3 \hat{k}
$$

and

$$
\overrightarrow{\mathrm{AD}}=4(-\hat{i}+\hat{j}+\hat{k})-(4 \hat{i}+5 \hat{j}+\hat{k})=-8 \hat{i}-\hat{j}+3 \hat{k}
$$

Thus $[\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{AD}}]=\left|\begin{array}{ccc}-4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3\end{array}\right|=0$.
Hence A, B, C and D are coplanar.
Example 30 Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$.
Solution We have

$$
\left.\begin{array}{l}
\quad[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=(\vec{a}+\vec{b}) \cdot((\vec{b}+\vec{c}) \times(\vec{c}+\vec{a})) \\
=(\vec{a}+\vec{b}) \cdot(\vec{b} \times \vec{c}+\vec{b} \times \vec{a}+\vec{c} \times \vec{c}+\vec{c} \times \vec{a}) \\
=(\vec{a}+\vec{b}) \cdot(\vec{b} \times \vec{c}+\vec{b} \times \vec{a}+\vec{c} \times \vec{a}) \quad(\text { as } \vec{c} \times \vec{c}=\overrightarrow{0})
\end{array}\right\} \begin{aligned}
& =\vec{a} \cdot(\vec{b} \times \vec{c})+\vec{a} \cdot(\vec{b} \times \vec{a})+\vec{a} \cdot(\vec{c} \times \vec{a})+\vec{b} \cdot(\vec{b} \times \vec{c})+\vec{b} \cdot(\vec{b} \times \vec{a})+\vec{b} \cdot(\vec{c} \times \vec{a}) \\
& =[\vec{a}, \vec{b}, \vec{c}]+[\vec{a}, \vec{b}, \vec{a}]+[\vec{a}, \vec{c}, \vec{a}]+[\vec{b}, \vec{b}, \vec{c}]+[\vec{b}, \vec{b}, \vec{a}]+[\vec{b}, \vec{c}, \vec{a}] \\
& =2[\vec{a}, \vec{b}, \vec{c}]
\end{aligned}
$$

Example 31 Prove that $[\vec{a}, \vec{b}, \vec{c}+\vec{d}]=[\vec{a}, \vec{b}, \vec{c}]+[\vec{a}, \vec{b}, \vec{d}]$
Solution We have

$$
\begin{aligned}
{[\vec{a}, \vec{b}, \vec{c}+\vec{d}] } & =\vec{a} \cdot(\vec{b} \times(\vec{c}+\vec{d})) \\
& =\vec{a} \cdot(\vec{b} \times \vec{c}+\vec{b} \times \vec{d}) \\
& =\vec{a} \cdot(\vec{b} \times \vec{c})+\vec{a} \cdot(\vec{b} \times \vec{d}) \\
& =[\vec{a}, \vec{b}, \vec{c}]+[\vec{a}, \vec{b}, \vec{d}]
\end{aligned}
$$

Exercise 10.5

1. Find $[\vec{a} \vec{b} \vec{c}]$ if $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{c}=3 i+j-2 \hat{k}$
(Ans. 24)
2. Show that the vectors $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=-2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}+5 \hat{k}$ are coplanar.
3. Find λ if the vectors $\hat{i}-\hat{j}+\hat{k}, 3 \hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+\lambda \hat{j}-3 \hat{k}$ are coplanar.
(Ans. $\lambda=15$)
4. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ Then
(a) If $c_{1}=1$ and $c_{2}=2$, find c_{3} which makes \vec{a}, \vec{b} and \vec{c} coplanar (Ans. $c_{3}=2$)
(b) If $c_{2}=-1$ and $c_{3}=1$, show that no value of c_{1} can make \vec{a}, \vec{b} and \vec{c} coplanar.
5. Show that the four points with position vectors
$4 \hat{i}+8 \hat{j}+12 \hat{k}, 2 \hat{i}+4 \hat{j}+6 \hat{k}, 3 \hat{i}+5 \hat{j}+4 \hat{k}$ and $5 \hat{i}+8 \hat{j}+5 \hat{k}$ are coplanar.
6. Find x such that the four points A $(3,2,1)$ B $(4, x, 5), \mathrm{C}(4,2,-2)$ and D $(6,5,-1)$ are coplanar.

$$
\text { (Ans. } x=5 \text {) }
$$

7. Show that the vectors \vec{a}, \vec{b} and \vec{c} coplanar if $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are coplanar.
