TERM-1
 SAMPLE PAPER
 SOLVED

MATHEMATICS
 (STANDARD)

General Instructions: Same instructions as given in the Sample Paper 1.

1. The ratio of HCF and LCM of numbers 28 and 32 is:
(a) $4: 27$
(b) $1: 56$
(c) $56: 1$
(d) $27: 4$
2. In a group of three friends, the probability of two friends not having the same birthday is 0.992 . Then, what is the probability that the two friends have the same birthday?
(a) 0.001
(b) 0.008
(c) 0.007
(d) 0.006
3. What is the length of side $A C$ in $\triangle A B C$, which is right angled at B if $B C=5 \mathrm{~cm}$ and $\angle B A C=30^{\circ}$?
(a) 5 cm
(b) 15 cm
(c) 10 cm
(d) 7 cm
4. Consider an isosceles right angled triangle $\triangle A B C$ at C, then $A B^{2}=$ \qquad times $A C^{2}$.
(a) 1
(b) 2
(c) 3
(d) 4
5. If the zeroes of the polynomial $x^{2}-2 k x+2$ are equal in magnitude but opposite in sign, then the value of k is:
(a) 0
(b) 1
(c) 2
(d) 3
6. What is the distance of the point $P(3,-4)$ from the origin?
(a) 3 units
(b) 4 units
(c) 5 units
(d) 6 units
7. Evaluate the approximate area covered by hour hand in 1 hour, where the length of hour hand of a clock is 7 cm .
(a) $9 \mathrm{~cm}^{2}$
(b) $11 \mathrm{~cm}^{2}$
(c) $13 \mathrm{~cm}^{2}$
(d) $15 \mathrm{~cm}^{2}$
8. Find the value of y, from the equations $x-y=0.9$ and $\frac{11}{x+y}=2$.
(a) 1.2
(b) 2.1
(c) 3.2
(d) 2.3
9. Evaluate for x, if, $A B|\mid D C$ in the given figure.

(a) 6
(b) 7
(c) 8
(d) 4
10. What is the area of a square inscribed in a circle having diameter $p \mathrm{~cm}$?
(a) $\frac{p^{2}}{2} \mathrm{~cm}^{2}$
(b) $p^{2} \mathrm{~cm}^{2}$
(c) $\frac{\pi p^{2}}{2} \mathrm{~cm}^{2}$
(d) $\pi p^{2} \mathrm{~cm}^{2}$
11. The HCF of co-prime numbers 17 and 43 is:
(a) 7
(b) 6
(c) 1
(d) 3
12. In $\triangle A B C, D$ and E are points on sides $A B$ and $A C$ respectively such that $D E \| B C$. If $A E=1.8 \mathrm{~cm}$, $B D=7.2 \mathrm{~cm}$ and $C E=5.4 \mathrm{~cm}$, then the length of $A D$ is:
(a) 3.6 cm
(b) 2.8 cm
(c) 2.4 cm
(d) 1.8 cm
13. If α and β are the zeroes of a polynomial $x^{2}-3 x-4$, then the polynomial whose zeroes are $(\alpha+\beta)$ and $\alpha \beta$ is :
(a) $x^{2}-x+12$
(b) $x^{2}+x-12$
(c) $x^{2}-x-12$
(d) $x^{2}+x+12$
14. What is the probability of getting a consonant, when a letter of English alphabet is chosen at random?
(a) $\frac{5}{26}$
(b) $\frac{21}{26}$
(c) $\frac{19}{26}$
(d) $\frac{17}{26}$
15. If $A D$ is a median of $\triangle A B C$ with vertices $A(5,-7), B(4,7)$ and $C(6,-5)$, then what are the coordinates of D ?
(a) $(5,1)$
(b) $(-1,1)$
(c) $(-5,1)$
(d) $(1,1)$
16. Evaluate for what value of k, the system of equations $2 x-y=5$ and $6 x+k y=15$ has infinitely many solutions.
(a) 8
(b) -3
(c) 3
(d) 6
17. A situation is given. Represent it in the form of linear equations. 5 books and 7 pens together cost ₹ 79 whereas 7 books and 5 pens together cost ₹ 77. Here consider cost of each book as ₹ x and that of each pen as ₹ y.
(a) $17 x+7 y=79,5 x+5 y=77$
(b) $5 x+7 y=79,7 x+5 y=77$
(c) $5 x+5 y=79,7 x+7 y=77$
(d) Data insufficient
18. Given two triangles $A B C$ and $D E F$ such that $\triangle A B C \sim \triangle D E F$. Also, $\operatorname{ar}(\triangle A B C)=25 \mathrm{~cm}^{2}$, ar $(\triangle D E F)=64 \mathrm{~cm}^{2}$ and $A B=5 \mathrm{~cm}$. Then length of side $D E$ is:
(a) 8 cm
(b) 10 cm
(c) 4 cm
(d) 12 cm
19. The product of $(3+\sqrt{3})$ and $(3-\sqrt{5})$ is:
(a) a rational number
(b) an irrational number
(c) a prime number
(d) a co-prime number
20. $0 x^{2}+2 x-5$ is an example of a :
(a) cubic polynomial
(b) quadratic polynomial
(c) linear polynomial
(d) quadratic equation

SECTION - B
(Section B consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.)
21. A girl of height 90 cm is standing near a lamp-post. Now, she starts walking away from the base of a lamp post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. If the lamp is 3.6 m above the ground, then what is the length of her shadow after 4 seconds?
(a) 1.6 m
(b) 1.5 m
(c) 3 m
(d) 2 m
22. In the figure, $O A B C$ is rhombus and O is the origin. If the coordinates of A and C are $(a, 0)$ and (s, t), respectively, then the coordinates of B are:

(a) $(s, a+t)$
(b) $(a, s+t)$
(c) $(a+s, t)$
(d) $(s+t, a)$
23. If α and β are the zeroes of the polynomial $p(x)=x^{2}-5 x+k$ and $\alpha-\beta=1$, then the value of k is:
(a) 7
(b) 6
(c) 5
(d) 4
24. For two linear equations $a_{1} x+b_{1} y+c_{1}$ $=0$ and $a_{2} x+b_{2} y+c_{2}=0$, the condition $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$ is for:
(a) Unique solution
(b) Infinite solutions
(c) No solution
(d) Data insufficient
25. What is the probability of getting the sum of perfect square, in a single throw of a pair of dice?
(a) $\frac{1}{36}$
(b) $\frac{5}{36}$
(c) $\frac{7}{36}$
(d) $\frac{11}{36}$
26. Evaluate $\sin \theta \cdot \cos \theta$, if $\sin \theta+\cos \theta=\sqrt{2}$.
(a) $\sqrt{2}$
(b) 1
(c) 0
(d) $\frac{1}{2}$
27. The area of shaded region in the given figure is:

(a) $6.125 \mathrm{~cm}^{2}$
(b) $5.5 \mathrm{~cm}^{2}$
(c) $2.625 \mathrm{~cm}^{2}$
(d) $12.25 \mathrm{~cm}^{2}$
28. Evaluate the least number which when divided by the numbers $18,24,30$ and 42 leaves a remainder of 1 .
(a) 4221
(b) 2521
(c) 3862
(d) 1221
29. The decimal expansion of $\frac{17}{125}$ is:
(a) 0.017
(b) 0.136
(c) 0.68
(d) 4.25
30. The graph of a polynomial function is a smooth continuous curve. By looking at graph, we can find the number of zeros of the polynomial. Graphs are the geometrical meaning of the polynomials. They help us to understand their type, nature of its zeroes and coefficients of its various terms.

Which of the above graph represent quadratic polynomials?
(a) 1 and 3
(b) 1, 3 and 5
(c) Only 5
(d) Only 6
31. If $a+b+c=0$ and $\mathrm{A}(a, b), \mathrm{B}(b, c)$ and $\mathrm{C}(c, a)$ are vertices of $\triangle A B C$, then the coordinates of its centroid are:
(a) $\left(\frac{a+b+c}{2}, \frac{a+b+c}{2}\right)$
(b) $\left(\frac{a+b+c}{3}, \frac{a+b+c}{3}\right)$
(c) $(1,1)$
(d) $(0,0)$
32. If a number is selected at random from the numbers 1 to 30, then the probability that it is a prime number, is:
(a) $\frac{1}{2}$
(b) $\frac{2}{5}$
(c) $\frac{1}{3}$
(d) $\frac{3}{4}$
33. In the figure, $D E \| B C$. If $A D=1 \mathrm{~cm}$ and $B D$ $=2 \mathrm{~cm}$, then the ratio of areas of $\triangle A D E$ and $\triangle A B C$ is:

(a) $1: 4$
(b) $1: 2$
(c) $2: 3$
(d) $1: 9$
34. Find the area of shaded region in the given figure in which the square is of side 100 cm and quadrant of radius 14 cm is formed at four corners.

(a) $9384 \mathrm{~cm}^{2}$
(b) $8998 \mathrm{~cm}^{2}$
(c) $9212 \mathrm{~cm}^{2}$
(d) $9656 \mathrm{~cm}^{2}$
35. Evaluate one of the common solution of $a x+$ by $=c$ and y-axis?
(a) $(0, b)$
(b) $\left(0, \frac{c}{b}\right)$
(c) $\left(0, \frac{a}{c}\right)$
(d) $(0,0)$
36. The graphical representation of $x-2 y+4=$ 0 and $x+4 y+2=0$ will be:
(a) coincident lines
(b) parallel lines
(c) intersecting lines
(d) Data insufficient
37. Which of the following is an example of nonterminating decimal?
(a) $\frac{5}{8}$
(b) $\frac{9}{640}$
(c) $\frac{4}{45}$
(d) $\frac{1}{25}$
38. If $x=2$ is a zero of polynomial $a x^{2}-b x+2$, then what is the relation between a and b ?
(a) $2 a-b+1=0$
(b) $a+b+1=0$
(c) $a-b+1=0$
(d) $7 a-5 b+1=0$
39. $\triangle A B C \sim \triangle P Q R$. If $A B=4 \mathrm{~cm}, B C=3 \mathrm{~cm}$, $C A=7 \mathrm{~cm}$ and $P R=2 \mathrm{~cm}$, then the perimeter of $\triangle P Q R$ is:
(a) 2 cm
(b) 4 cm
(c) 14 cm
(d) 7 cm
40. If the HCF of 408 and 1032 is expressible in the form $1032 \times 2+408 \times p$, then the value of p is:
(a) -10
(b) -15
(c) -5
(d) 10

SECTION - C

8 marks
(Case Study Based Questions.)
(Section C consists of 10 questions of 1 mark each. Any 8 questions are to be attempted.)

Q. 41-45 are based on case study-1

Case Study-1:

Four friends visited a nearby park to play. They decided to play with the ball. So they get stood the four corners P, Q, R, S of the rectangulor park PQRS and started playing pass the ball.

41. If A is the mid-point of P and Q, then find the coordinates of A.
(a) $(3,-8)$
(b) $(2,-8)$
(c) $(-8,2)$
(d) $(-8,3)$
42. If $k: 1$ is the ratio in which point A divides the line RS, then the value of k is:
(a) 5
(b) 4
(c) 3
(d) 2
43. What are the coordinates of the point S ?
(a) $(-6,9)$
(b) $(-6,8)$
(c) $(-6,7)$
(d) $(-6,6)$
44. Calculate the total distance between the points P and Q .
(a) 9 units
(b) 10 units
(c) 8 units
(d) 7 units
45. What is the distance between the points S and R ?
(a) $2 \sqrt{29}$ units
(b) $3 \sqrt{29}$ units
(c) $\sqrt{26}$ units
(d) $2 \sqrt{26}$ units

Q. 46-50 are based on Case Study-2

Case Study-2:

Located in Nigdi, the Bhakti Shakti flag was set up by the Pimpri Chinchwad Municipal Corporation (PCMC) in 2018. The approximately 105 metre high flagpole weighs 42 tonnes and the flag is made up of knitted polyester and the flag itself weighs 90 kg and can sustain winds up to 25 km per hour. The height of the flag is shown in the picture as $P Q$ and the distance between the foot of the flagpole Q and a point R on the ground is 208 m .

46. The value of $\cos R$ is:
(a) $\frac{105}{233}$
(b) $\frac{105}{208}$
(c) $\frac{208}{105}$
(d) $\frac{208}{233}$
47. The value of $\sin P$ is:
(a) $\frac{208}{233}$
(b) $\frac{105}{208}$
(c) $\frac{208}{105}$
(d) $\frac{105}{233}$
48. The value of cosec R is:
(a) $\frac{208}{233}$
(b) $\frac{233}{105}$
(c) $\frac{208}{105}$
(d) $\frac{105}{233}$
49. The value of $\tan ^{2} P-\sec ^{2} P$ is:
(a) 0
(b) 1
(c) -1
(d) 2
50. $\tan P-\cot R$ is:
(a) 1
(b) 0
(c) -1
(d) 2

SOLUTION

SECTION - A

1. (b) $1: 56$

Explanation: Since, $28=2^{2} \times 7$ and $32=2^{5}$.
$\therefore \quad \operatorname{HCF}(28,32)=2^{2}=4$
and $\operatorname{LCM}(28,32)=2^{5} \times 7=32 \times 7=224$
$\therefore \quad$ HCF: LCM $=4: 224=1: 56$
2. (b) 0.008

Explanation:We know, P (having same birthday)
$+P($ not having the same birthday $)=1$
$\Rightarrow P($ having same birthday $)+0.992=1$
$\Rightarrow P($ having same birthday $)=1-0.992=0.008$
3. (c) 10 cm

Explanation: We have, $\angle \mathrm{BAC}=30^{\circ}$, i.e., $\angle \mathrm{A}=$ 30° and $\mathrm{BC}=5 \mathrm{~cm}$

Now,

$$
\begin{array}{rlrl}
\sin A & =\frac{B C}{A C} \\
\Rightarrow \quad \sin 30^{\circ} & =\frac{5}{A C} \\
\Rightarrow \quad & \frac{5}{A C} & =\frac{1}{2} & {\left[\because \sin 30^{\circ}=\frac{1}{2}\right]} \\
\Rightarrow \quad A C & =2 \times 5=10 \mathrm{~cm}
\end{array}
$$

4. (b) 2

Explanation: Here, $A C=B C$

\therefore Using Pythagoras theorem,

$$
\begin{aligned}
A B^{2} & =A C^{2}+B C^{2} \\
& =2 A C^{2}
\end{aligned}
$$

5. (a) 0

Explanation: Let one zero of the given polynomial be α.
Then, other zero $=-\alpha$
We know, sum of zeroes $=\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}$

$$
\begin{aligned}
\Rightarrow & \alpha+(-\alpha) & =-\frac{(-2 k)}{1} \\
\Rightarrow & 0 & =2 k \\
\Rightarrow & k & =0
\end{aligned}
$$

6. (c) 5 units

Explanation: Coordinates of origin are (0,0).

$$
\begin{aligned}
\therefore \quad \text { Distance } & =\sqrt{(3-0)^{2}+(-4-0)^{2}} \\
& =\sqrt{9+16}=\sqrt{25}=5 \text { units }
\end{aligned}
$$

7. (c) $13 \mathrm{~cm}^{2}$

Explanation: Angle described by hour hand in
1 hour $=\frac{360^{\circ}}{12}=30^{\circ}$
\therefore Area swept $=\frac{\theta}{360^{\circ}} \times \pi r^{2}$

$$
=\frac{30^{\circ}}{360^{\circ}} \times \frac{22}{7} \times(7)^{2}=12.83 \mathrm{~cm}^{2}
$$

8. (d) 2.3

Explanation: We have

$$
\begin{equation*}
x-y=0.9 \tag{i}
\end{equation*}
$$

and $\quad \frac{11}{x+y}=2$

$$
\begin{array}{ll}
\therefore & x+y=\frac{11}{2} \\
\Rightarrow & x+y=5.5
\end{array}
$$

Adding eq. (i) and (ii), we get

$$
\begin{aligned}
& 2 x & =6.4 \\
\Rightarrow & x & =3.2 \\
\therefore & y & =55-3.2=2.3
\end{aligned}
$$

9. (b) 7

Explanation: Here, $A B$ || DC
$\therefore A B C D$ forms a trapezim

Also, $\quad \triangle \mathrm{AOB} \sim \triangle C O D \quad$ (AA similarity)

$$
\begin{array}{rlrl}
\therefore & \frac{O A}{O C} & =\frac{O B}{O D} \\
\Rightarrow & \frac{x+5}{x+3} & =\frac{x-1}{x-2} \\
\Rightarrow & & (x+5)(x-2) & =(x-1)(x+3) \\
\Rightarrow & x^{2}+3 x-10 & =x^{2}+2 x-3 \\
\Rightarrow & & x & =7
\end{array}
$$

10. (a) $\frac{p^{2}}{2} \mathrm{~cm}^{2}$

Explanation: Diagonal of the square = Diameter of circle $=p \mathrm{~cm}$
$\therefore p^{2}=A B^{2}+\mathrm{BC}^{2}=$ side $^{2}+$ side 2

$\Rightarrow \quad p^{2}=2$ side 2
or side $^{2}=\frac{p^{2}}{2} \mathrm{~cm}^{2}=$ Area of the square
11. (c) 1

Explanation: HCF of co-prime numbers is always one.
12. (c) 2.4 cm

Explanation:

$\because \quad D E \| B C$
Using Thales theorem,

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{\mathrm{AD}}{7.2}=\frac{1.8}{5.4} \Rightarrow \frac{\mathrm{AD}}{7.2}=\frac{1}{3} \\
\Rightarrow & \mathrm{AD}=\frac{7.2}{3}=2.4
\end{array}
$$

13. (b) $x^{2}+x-12$

Explanation: Let $p(x)=x^{2}-3 x-4$
since, α and β are the zeros at above polynomial

$$
\begin{aligned}
& \therefore & \alpha+\beta & =-\frac{(-3)}{1}=3 \\
& \text { and } & \alpha \beta & =\frac{-4}{1}=-4
\end{aligned}
$$

Let a and b be the zeroes of the required polynomial.

Then, $a=\alpha+\beta$ and $b=\alpha \beta$

$$
\begin{aligned}
\therefore \quad a+b & =(\alpha+\beta)+(\alpha \beta) \\
& =3+(-4)=-1
\end{aligned}
$$

and

$$
\begin{aligned}
a b & =(\alpha+\beta) \times \alpha \beta \\
& =3 \times(-4)=-12
\end{aligned}
$$

So, the required polynomial is
i.e.

$$
\begin{gathered}
x^{2}-(a+b) x+a b \\
x^{2}+x-12
\end{gathered}
$$

14. (b) $\frac{21}{26}$

Explanation: We know that, in English alphabet, there are 26 letters (5 vowels +21 consonants).
So, total number of outcomes $=26$
and number of favourable outcomes $=21$
Hence, required probability $=\frac{21}{26}$
15. (a) $(5,1)$

Explanation: We know, median of a triangle bisects the base.

$\therefore \mathrm{D}$ is the mid-point of $B C$.
\therefore Coordinates of $D=\left(\frac{4+6}{2}, \frac{7-5}{2}\right)$

$$
=(5,1)
$$

16. (b) -3

Explanation: Given system of equations is:

$$
2 x-y=5 \text { and } 6 x+k y=15
$$

For infinitely many solutions, we have

$$
\begin{aligned}
& \frac{2}{6} & =-\frac{1}{k}=\frac{-5}{-15} \\
\Rightarrow & \frac{1}{3} & =-\frac{1}{k} \\
\Rightarrow & k & =-3
\end{aligned}
$$

17. (b) $5 x+7 y=79,7 x+5 y=77$

Explanation: Consider x and y as the cost of the each book and each pen respectively.
\therefore According to question, we have

$$
\begin{array}{ll}
& 5 x+7 y=79 \\
\text { and } & 7 x+5 y=77
\end{array}
$$

18. (a) 8 cm

Explanation: Since, $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$
$\therefore \quad \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\left(\frac{\mathrm{AB}}{\mathrm{DE}}\right)^{2}$

$$
\begin{array}{ll}
\Rightarrow & \frac{25}{64}=\left(\frac{5}{\mathrm{DE}}\right)^{2} \\
\Rightarrow & \frac{5}{8}=\frac{5}{\mathrm{DE}}
\end{array}
$$

[Taking square root both sides]
\Rightarrow
$D E=8$
19. (b) an irrational number

Explanation: We have, $(3+\sqrt{3})(3-\sqrt{5})$
$=9-3 \sqrt{5}+3 \sqrt{3}-\sqrt{15}$ which is an irrational number.
20. (c) Linear polynomial

Explanation: $\because 0 x^{2}=0$
\therefore The polynomial is $2 x=5$, which highest power of variable x is 1 .
\therefore It is a linear polynomial.

SECTION - B

21. (a) 1.6 m

Explanation: Speed of girl $=1.2 \mathrm{~m} / \mathrm{s}$
\therefore In 4 seconds,

Distance travelled by her $=1.2 \times 4=4.8 \mathrm{~m}$
\because After 4 seconds, she reaches at D.

$$
\therefore \quad B D=4.8 \mathrm{~m}
$$

Let $C D=x \mathrm{~m}$ be the length of her shadow.

$$
\left.\begin{array}{rlrl}
\text { Now, } & & \angle \mathrm{ABD} & =\angle \mathrm{EDC}=90^{\circ} \\
& \therefore & A B & \| \mathrm{ED} \\
& \therefore & \angle \mathrm{ABC} & \sim \Delta \mathrm{EDC} \\
& & \frac{\mathrm{AB}}{\mathrm{ED}} & =\frac{\mathrm{BC}}{\mathrm{DC}} \\
& & \frac{3.6}{0.9} & =\frac{4.8+x}{x} \\
& \Rightarrow & & 4 x
\end{array}\right)=4.8+x .
$$

22. (c) $(a+s, t)$

Explanation: Let the coordinates of B be (x, y). Clearly, Perpendicular distance of C from x-axis
$=$ Perpendicular distance of B from x-axis
$\Rightarrow \quad t=y$
Also, Length of side $\mathrm{OA}=a$
$\therefore \quad B C=a$ units
[\because Sides of rhombus are equal in length]
$\Rightarrow \sqrt{(x-s)^{2}+(t-t)^{2}}=a$
$\Rightarrow \quad \sqrt{(x-s)^{2}}=a$
$\Rightarrow \quad x-s=a \Rightarrow x=s+a$
$\therefore \quad B=(x, y)=(s+a, t)$
23. (b) 6

Explanation: We have,

$$
\begin{equation*}
\alpha+\beta=-\frac{(-5)}{1}=5 \tag{i}
\end{equation*}
$$

Solving equations (i) and (iii), we get

$$
\alpha=3, \beta=2
$$

$$
\begin{aligned}
\text { From (ii), } & \alpha \beta & =k \\
\Rightarrow & 3 \times 2 & =k \\
\Rightarrow & k & =6
\end{aligned}
$$

24.(b) Infinite solutions
25. (c) $\frac{7}{36}$

Explanation: Total number of outcomes $=36$
Favourable outcomes are $\{(1,3),(2,2),(3,1)$, $(3,6),(6,3),(4,5),(5,4)\}$
\therefore Required probability $=\frac{7}{36}$
26. (d) $\frac{1}{2}$

Explanation: Given, $\sin \theta+\cos \theta=\sqrt{2}$
Squaring both sides, we get :

$$
\begin{aligned}
& (\sin \theta+\cos \theta)^{2}=(\sqrt{2})^{2} \\
& \Rightarrow \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=2 \\
& \Rightarrow \quad 1+2 \sin \theta \cos \theta=2 \\
& \Rightarrow \quad 2 \sin \theta \cos \theta=1 \\
& \Rightarrow \quad \sin \theta \cos \theta=\frac{1}{2}
\end{aligned}
$$

27. (a) $6.125 \mathrm{~cm}^{2}$

Explanation: Area of shaded region = Area of quadrant OABC - Area of triangle OAD

$$
\begin{aligned}
& =\frac{1}{4} \pi r^{2}-\frac{1}{2} \times \mathrm{OA} \times \mathrm{OD} \\
& =\frac{1}{4} \times \frac{22}{7} \times 3.5^{2}-\frac{1}{2} \times 3.5 \times 2 \\
& =9.625-3.5 \\
& =6.125 \mathrm{~cm}^{2}
\end{aligned}
$$

28. (b) 2521

Explanation:

We have,

$$
\begin{aligned}
& 18=2 \times 3^{2} \\
& 24=2^{3} \times 3 ; \\
& 30=2 \times 3 \times 5
\end{aligned}
$$

and $\quad 42=2 \times 3 \times 7$
$\operatorname{LCM}(18,24,30,42)=2^{3} \times 3^{2} \times 5 \times 7=2520$
So, required least number is $2520+1=$ 2521
29. (b) 0.136

Explanation: We have,

$$
\frac{17}{125}=\frac{17}{5^{3}}=\frac{17 \times 2^{3}}{5^{3} \times 2^{3}}=\frac{136}{10^{3}}=0.136
$$

30. (b) 1, 3 and 5

Explanation: Graph of quadratic polynomials are parabolic in shape.
31. (d) $(0,0)$

Explanation:

$$
\begin{aligned}
\text { Centroid } & =\left(\frac{a+b+c}{3}, \frac{b+c+a}{3}\right) \\
& =(0,0) \quad[\because a+b+c=0]
\end{aligned}
$$

32. (c) $\frac{1}{3}$

Explanation: Total number of outcomes $=30$
Prime numbers from 1 to 30
$=\{2,3,5,7,11,13,17,19,23,29\}$
\Rightarrow Number of favourable outcomes $=10$
$\therefore \quad P($ prime number $)=\frac{10}{30}=\frac{1}{3}$
33. (d) 1 : 9

Explanation: $\because D E \| B C$
$\therefore \mathrm{By} \mathrm{AA}$ similarity criterion,

$$
\begin{aligned}
\Delta \mathrm{ADE} & \sim \Delta \mathrm{ABC} \\
\therefore \quad \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{ABC})} & =\left(\frac{\mathrm{AD}}{\mathrm{AB}}\right)^{2}=\left(\frac{\mathrm{AE}}{\mathrm{AC}}\right)^{2}=\left(\frac{\mathrm{DE}}{\mathrm{BC}}\right)^{2} \\
\Rightarrow \quad \frac{\operatorname{ar}(\Delta \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{ABC})} & =\left(\frac{\mathrm{AD}}{\mathrm{AB}}\right)^{2} \\
& =\left(\frac{\mathrm{AD}}{\mathrm{AD}+\mathrm{BD}}\right)^{2}=\left(\frac{1}{1+2}\right)^{2}=\frac{1}{9}
\end{aligned}
$$

34. (a) $9384 \mathrm{~cm}^{2}$

Explanation: Radius of quadrant $=14 \mathrm{~cm}$
$\therefore \quad$ Area of quadrant $=\frac{90^{\circ}}{360^{\circ}} \times \pi \times(14)^{2}$

$$
\begin{aligned}
& =\frac{1}{4} \times \frac{22}{7} \times 14 \times 14 \\
& =154 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Area of four quadrants $=4(154)=616 \mathrm{~cm}^{2}$

$$
\text { Area of square }=(100)^{2}=10000 \mathrm{~cm}^{2}
$$

\therefore Area of shaded region $=$ Area of square - Area of four quadrants
$=10000-616$
$=9384 \mathrm{~cm}^{2}$
35. (b) $\left(0, \frac{c}{b}\right)$

Explanation: On y-axis,

$$
\begin{aligned}
& & x & =0 \\
& \therefore & a \times 0+b y & =c \\
\Rightarrow & & y & =\frac{c}{b}
\end{aligned}
$$

36. (c) intersecting lines

Explanation:
We have, $\frac{a_{1}}{a_{2}}=\frac{1}{3} ; \frac{b_{1}}{b_{2}}=\frac{-2}{4}=-\frac{1}{2}$

$$
\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}
$$

\therefore Given pair of lines represent intersecting lines.
37. (c) $\frac{4}{45}$

Explanation: The denominators of $\frac{5}{8}, \frac{9}{640}$ and $\frac{1}{25}$ are of the form $2^{m} 5^{n}$ where m, n non-negative integers. So they are terminating decimals.

But in case of $\frac{4}{45}$,

$$
\frac{4}{45}=\frac{4}{3^{2} \times 5}
$$

i.e., denominator is not of the form $2^{m} 5^{n}$, so it is a non-terminating decimal.
38. (a) $2 a-b+1=0$

Explanation: Since, $x=2$ is a zero of $a x^{2}-b x+2$
$\therefore \quad a(2)^{2}-b(2)+2=0$
$\Rightarrow \quad 4 a-2 b+2=0$
$\Rightarrow \quad 2 a-b+1=0$
which is the required relation between a and b.
39. (b) 4 cm

Explanation: $\because \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\therefore \quad \frac{\text { Perimeter of } \triangle A B C}{\text { Perimeter of } \triangle P Q R}=\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{AB}+\mathrm{BC}+\mathrm{CA}}{\text { Perimeter of } \triangle \mathrm{PQR}}=\frac{\mathrm{AC}}{\mathrm{PR}} \\
& \Rightarrow \quad \frac{4+3+7}{\text { Perimeter of } \triangle \mathrm{PQR}}=\frac{7}{2} \\
& \Rightarrow \quad \frac{14}{\text { Perimeter of } \triangle \mathrm{PQR}}=\frac{7}{2} \\
& \Rightarrow \quad \text { Perimeter of } \triangle \mathrm{PQR}=4 \mathrm{~cm}
\end{aligned}
$$

40. (c) -5

Explanation: We have,

2	408					
2	204					
2	102					
3	51					
17	17					
			2	\quad	2	516
:---	:---					

$$
\left.\begin{array}{rlrl}
408 & =2^{3} \times 3 \times 17 \\
& & 1032 & =2^{3} \times 3 \times 43 \\
& \therefore & \text { HCF }(408,1032) & =2^{3} \times 3=24 \\
\therefore & 1032 \times 2+408 \times p & =24 \\
\Rightarrow & & 408 \times p & =24-(1032 \times 2) \\
& & =-2040 \\
& & & p
\end{array}\right) \frac{-2040}{408}=-5
$$

SECTION - C

41. (d) $(-8,3)$

Explanation: Coordinates of points P and Q are $(-12,6)$ and $(-4,0)$, respectively.
$\because \quad A$ is the mid-point of P and Q.
\therefore Coordinates of $A=\left(\frac{-12-4}{2}, \frac{6+0}{2}\right)$

$$
=\left(\frac{-16}{2}, \frac{6}{2}\right)=(-8,3)
$$

42. (d) 2

Explanation: From Q. 41, we have $A=(-8,3)$.
Now, by section formula, we have

$$
\begin{aligned}
& (-8,3)=\left(\frac{k(-6)+1(-12)}{k+1}, \frac{k y+1(-7)}{k+1}\right) \\
& \Rightarrow \quad \frac{-6 k-12}{k+1}=-8
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & -6 k-12 & =-8 k-8 \\
\Rightarrow & 8 k-6 k & =-8+12 \\
\Rightarrow & 2 k & =4 \\
\Rightarrow & k & =2
\end{aligned}
$$

43. (b) $(-6,8)$

Explanation: From Q. 42, we have

$$
k=2
$$

Also, $\quad \frac{k y-7}{k+1}=3$

$$
\begin{aligned}
\Rightarrow & 2 y-7 & =9 \\
\Rightarrow & 2 y & =16 \\
\Rightarrow & y & =8
\end{aligned}
$$

Thus, the coordinates of point S are $(-6,8)$.
44. (b) 10 units

Explanation: We have, $\mathrm{P}(-12,6)$ and $\mathrm{Q}(-4,0)$ is,

$$
\begin{aligned}
\therefore \quad \mathrm{PQ} & =\sqrt{(-4+12)^{2}+(0-6)^{2}} \\
& =\sqrt{8^{2}+6^{2}}=\sqrt{64+36} \\
& =\sqrt{100}=10 \text { units }
\end{aligned}
$$

45. (b) $3 \sqrt{29}$ units

Explanation: We have,
$R(-12,-7)$ and $S(-6,8)$,

$$
\begin{aligned}
\therefore \quad \mathrm{RS} & =\sqrt{(-6+12)^{2}+(8+7)^{2}} \\
& =\sqrt{6^{2}+15^{2}}=\sqrt{36+225} \\
& =\sqrt{261}=\sqrt{9 \times 29}=3 \sqrt{29} \text { units }
\end{aligned}
$$

46. (d) $\frac{208}{233}$

Explanation: Applying Pythagoras theorem, we get

$$
P R^{2}=P Q^{2}+Q R^{2}=105^{2}+208^{2}
$$

Simplifying, we get,

$$
\begin{gathered}
P R^{2}=11025+43264=54289 \Rightarrow P R=233 \mathrm{~m} . \\
\therefore \cos R=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{Q R}{P R}=\frac{208}{233}
\end{gathered}
$$

47. (a) $\frac{208}{233}$

Explanation: $\sin P=\frac{\text { Perpendicular }}{\text { Hypotenuse }}=\frac{Q R}{P R}$

$$
=\frac{208}{233}
$$

48. (b) $\frac{233}{105}$

Explanation: $\operatorname{cosec} R=\frac{\text { Hypotenuse }}{\text { Perpendicular }}$

$$
=\frac{P R}{P Q}=\frac{233}{105}
$$

49. (c) -1

Explanation: We know, $\sec ^{2} \theta-\tan ^{2} \theta=1$

$$
\Rightarrow \quad \sec ^{2} P-\tan ^{2} P=1
$$

or, $-\left(\tan ^{2} P-\sec ^{2} P\right)=1$
$\Rightarrow \quad \tan ^{2} P-\sec ^{2} P=-1$
50.(b) 0

Explanation: $\tan P=\frac{\text { Perpendicular }}{\text { Base }}=\frac{Q R}{P Q}$

$$
=\frac{208}{105}
$$

$$
\text { and } \begin{aligned}
\cot R & =\frac{\text { Base }}{\text { Perpendicular }} \\
& =\frac{Q R}{P Q}=\frac{208}{105}
\end{aligned}
$$

Therefore, $\tan P-\cot R=\frac{208}{105}-\frac{208}{105}=0$

